Accurate and robust registration method for computer-assisted high tibial osteotomy surgery.


Journal

International journal of computer assisted radiology and surgery
ISSN: 1861-6429
Titre abrégé: Int J Comput Assist Radiol Surg
Pays: Germany
ID NLM: 101499225

Informations de publication

Date de publication:
Feb 2023
Historique:
received: 05 02 2022
accepted: 12 07 2022
pubmed: 3 8 2022
medline: 3 2 2023
entrez: 2 8 2022
Statut: ppublish

Résumé

Computer-assisted high tibial osteotomy (HTO) is a frequently used treatment technique for lower extremity orthopedics, and its small incision and low exposure area are major limitations in tibial registration. This work combines skin surface features and gives a suitable registration algorithm based on Iterative Closest Points (ICP) algorithm to improve registration results. Furthermore, the precision, stability and efficiency of the described method is evaluated. After the initialization stage, the bone surface and skin surface data are combined to construct registration features. Then, a steepest perturbation search method is performed after the ICP algorithm (SPS-ICP) to obtain the optimal transformation through several iterations. Finally, the registration result is evaluated by establishing ground-truth through manual landmarks. Phantom experiments including simulated human tissue show that the proximal fiducial registration error (FRE) of our method can reach 0.80 ± 0.30 mm (mean ± SD) with an overall rotational error < 1° and translational error < 1.5 mm. Furthermore, it remains stable when the point set is sparse. The average registration time is less than 40 s to ensure the high efficiency of surgical operation. The approach fully describes a well-defined framework without additional imaging acquisition equipment for Computer-assisted HTO. By the experiment on the basis of a phantom with simulated soft tissue, the proposed method enables the accurate and robust registration of the tibia, and its computation time meets the demands of surgery.

Identifiants

pubmed: 35916999
doi: 10.1007/s11548-022-02720-1
pii: 10.1007/s11548-022-02720-1
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

329-337

Subventions

Organisme : the National Key R&D Program of China
ID : No. 2018YFB1307800
Organisme : the National Natural Science Foundation of China
ID : No. 51775367
Organisme : Tianjin Science and Technology Planning Project
ID : No. 18PTLCSY00080
Organisme : Tianjin Science and Technology Planning Project
ID : No. 20201193

Informations de copyright

© 2022. CARS.

Références

Jackson JP (1958) Osteotomy for osteoarthritis of the knee: proceedings of the Sheffield Regional Orthopaedic Club. J Bone Joint Surg Br 40(4):826
Fujisawa Y, Masuhara K, Shiomi S (1979) The effect of high tibial osteotomy on osteoarthritis of the knee an arthroscopic study of 54 knee joints. Orthop Clin North Am 10(3):585–608
doi: 10.1016/S0030-5898(20)30753-7
Hernigou P, Medevielle D, Debeyre J, Goutallier D (1987) Proximal tibial osteotomy for osteoarthritis with varus deformity a ten to thirteen-year follow-up study. J Bone Joint Surg Am 69(3):332–354
doi: 10.2106/00004623-198769030-00005
Insall JN, Joseph DM, Msika C (1984) High tibial osteotomy for varus gonarthrosis a long-term follow-up study. J Bone Joint Surg Am 66(7):1040–1048
doi: 10.2106/00004623-198466070-00010
Akamatsu Y, Kobayashi H, Kusayama Y, Kumagai K, Saito T (2017) Opening wedge high tibial osteotomy using combined computed tomography-based and image-free navigation system. Arthrosc Tech 6(4):e1145–e1151. https://doi.org/10.1016/j.eats.2017.03.036
doi: 10.1016/j.eats.2017.03.036
Van den Bempt M, Van Genechten W, Claes T, Claes S (2016) How accurately does high tibial osteotomy correct the mechanical axis of an arthritic varus knee? A Systematic Review Knee 23(6):925–935. https://doi.org/10.1016/j.knee.2016.10.001
doi: 10.1016/j.knee.2016.10.001
Song SJ, Bae DK (2016) Computer-assisted navigation in high tibial osteotomy. Clin Orthop Surg 8(4):349–357. https://doi.org/10.4055/cios.2016.8.4.349
doi: 10.4055/cios.2016.8.4.349
Iorio R, Pagnottelli M, Vadalà A, Giannetti S, Di Sette P, Papandrea P, Conteduca F, Ferretti A (2013) Open-wedge high tibial osteotomy: comparison between manual and computer-assisted techniques. Knee Surg Sports Traumatol Arthrosc 21(1):113–119. https://doi.org/10.1007/s00167-011-1785-5
doi: 10.1007/s00167-011-1785-5
Lobenhoffer P (2014) Importance of osteotomy around to the knee for medial gonarthritis. Indicat Tech Results Orthopade 43(5):425–431. https://doi.org/10.1007/s00132-013-2189-7
doi: 10.1007/s00132-013-2189-7
Reising K, Strohm PC, Hauschild O, Schmal H, Khattab M, Südkamp NP, Niemeyer P (2013) Computer-assisted navigation for the intraoperative assessment of lower limb alignment in high tibial osteotomy can avoid outliers compared with the conventional technique. Knee Surg Sports Traumatol Arthrosc 21(1):b181-188. https://doi.org/10.1007/s00167-012-2088-1
doi: 10.1007/s00167-012-2088-1
Lee YS, Moon GH (2015) Comparative analysis of osteotomy accuracy between the conventional and devised technique using a protective cutting system in medial open-wedge high tibial osteotomy. J Orthop Sc 20(1):129–136. https://doi.org/10.1007/s00776-014-0663-7
doi: 10.1007/s00776-014-0663-7
Besl PJ, Mckay HD (1992) A method for registration of 3-D shapes. IEEE T Pattern Anal 14(2):239–256. https://doi.org/10.1109/34.121791
doi: 10.1109/34.121791
La Palombara PF, Fadda M, Martelli S, Marcacci M (1997) Minimally invasive 3D data registration in computer and robot assisted total knee arthroplasty. Med Biol Eng Comput 35(6):600–610. https://doi.org/10.1007/BF02510967
doi: 10.1007/BF02510967
Jakopec M, Harris SJ, Rodriguez Y, Baena F, Gomes P, Cobb J, Davies BL (2001) The first clinical application of a “hands-on” robotic knee surgery system. Comput Aided Surg 6(6):329–339. https://doi.org/10.1002/igs.10023
doi: 10.1002/igs.10023
Ma B, Ellis RE (2003) Robust registration for computer-integrated orthopedic surgery: laboratory validation and clinical experience. Med Image Anal 7(3):237–250. https://doi.org/10.1016/s1361-8415(02)00133-0
doi: 10.1016/s1361-8415(02)00133-0
Yang J, Li H, Campbell D, Jia Y (2016) Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration. IEEE Trans Pattern Anal Mach Intell 38(11):2241–2254. https://doi.org/10.1109/TPAMI.2015.2513405
doi: 10.1109/TPAMI.2015.2513405
Niu K, Homminga J, Sluiter VI, Sprengers A, Verdonschot N (2018) Feasibility of A-mode ultrasound based intraoperative registration in computer-aided orthopedic surgery: a simulation and experimental study. PLoS ONE 13(6):e0199136. https://doi.org/10.1371/journal.pone.0199136
doi: 10.1371/journal.pone.0199136
Baena FR, Hawke T, Jakopec M (2013) A bounded iterative closest point method for minimally invasive registration of the femur. Proc Inst Mech Eng H 227(10):1135–1144. https://doi.org/10.1177/0954411913500948
doi: 10.1177/0954411913500948
Maurer CR Jr, Maciunas RJ, Fitzpatrick JM (1998) Registration of head CT images to physical space using a weighted combination of points and surfaces. IEEE Trans Med Imaging 17(5):753–761. https://doi.org/10.1109/42.736031
doi: 10.1109/42.736031
Lorensen WE, Cline HE (1987) Marching cubes: A high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput Graph 21(4):163–169. https://doi.org/10.1145/37402.37422
doi: 10.1145/37402.37422
Loop C (1987) Smooth subdivision surfaces based on triangles. dissertation. University of California Utah, New Jersey
Hsu RW, Himeno S, Coventry MB, Chao EY (1990) Normal axial alignment of the lower extremity and load-bearing distribution at the knee. Clin Orthop Relat Res 255:215–227. https://doi.org/10.1097/00003086-199006000-00029
doi: 10.1097/00003086-199006000-00029
El-Azab H, Glabgly P, Paul J, Imhoff AB, Hinterwimmer S (2010) Patellar height and posterior tibial slope after open- and closed-wedge high tibial osteotomy: a radiological study on 100 patients. Am J Sports Med 38(2):323–329. https://doi.org/10.1177/0363546509348050
doi: 10.1177/0363546509348050
Pluim JP, Maintz JB, Viergever MA (2003) Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging 22(8):986–1004. https://doi.org/10.1109/TMI.2003.815867
doi: 10.1109/TMI.2003.815867
Markelj P, Tomaževič D, Likar B, Pernuš F (2012) A review of 3D/2D registration methods for image-guided interventions. Med Image Anal 16(3):642–661. https://doi.org/10.1016/j.media.2010.03.005
doi: 10.1016/j.media.2010.03.005
Livyatan H, Yaniv Z, Joskowicz L (2003) Gradient-based 2-D/3-D rigid registration of fluoroscopic X-ray to CT. IEEE Trans Med Imaging 22(11):1395–1406. https://doi.org/10.1109/TMI.2003.819288
doi: 10.1109/TMI.2003.819288
Nakajima Y, Tashiro T, Sugano N, Yonenobu K, Koyama T, Maeda Y, Tamura Y, Saito M, Tamura S, Mitsuishi M, Sugita N, Sakuma I, Ochi T, Matsumoto Y (2007) Fluoroscopic bone fragment tracking for surgical navigation in femur fracture reduction by incorporating optical tracking of hip joint rotation center. IEEE Trans Biomed Eng 54(9):1703–1706. https://doi.org/10.1109/TBME.2007.900822
doi: 10.1109/TBME.2007.900822
Wein W, Karamalis A, Baumgartner A, Navab N (2015) Automatic bone detection and soft tissue aware ultrasound-CT registration for computer-aided orthopedic surgery. Int J Comput Assist Radiol Surg 10(6):971–979. https://doi.org/10.1007/s11548-015-1208-z
doi: 10.1007/s11548-015-1208-z
Yan CX, Goulet B, Tampieri D, Collins DL (2012) Ultrasound-CT registration of vertebrae without reconstruction. Int J Comput Assist Radiol Surg 7(6):901–909. https://doi.org/10.1007/s11548-012-0771-9
doi: 10.1007/s11548-012-0771-9
Pandey P, Guy P, Hodgson AJ, Abugharbieh R (2018) Fast and automatic bone segmentation and registration of 3D ultrasound to CT for the full pelvic anatomy: a comparative study. Int J Comput Assist Radiol Surg 13(10):1515–1524. https://doi.org/10.1007/s11548-018-1788-5
doi: 10.1007/s11548-018-1788-5
Pandey PU, Quader N, Guy P, Garbi R, Hodgson AJ (2020) Ultrasound bone segmentation: a scoping review of techniques and validation practices. Ultrasound Med Biol 46(4):921–935. https://doi.org/10.1016/j.ultrasmedbio.2019.12.014
doi: 10.1016/j.ultrasmedbio.2019.12.014
Rai L, Gibbs JD, Wibowo H (2012) A C-arm calibration method with application to fluoroscopic image-guided procedures. Proc SPIE Int Soc Opt Eng 8316:832625-1-832625–11. https://doi.org/10.1117/12.911565
doi: 10.1117/12.911565
Sadowsky O, Lee J, Sutter EG, Wall SJ, Prince JL, Taylor RH (2011) Hybrid cone-beam tomographic reconstruction: incorporation of prior anatomical models to compensate for missing data. IEEE Trans Med Imaging 30(1):69–83. https://doi.org/10.1109/TMI.2010.2060491
doi: 10.1109/TMI.2010.2060491

Auteurs

Chuanba Liu (C)

Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300354, China.

Yimin Song (Y)

Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300354, China.

Xinlong Ma (X)

Department of Orthopedic, Tianjin Hospital, Tianjin, 300211, China.

Tao Sun (T)

Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, 300354, China. stao@tju.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH