Phosphofructokinase 1 platelet isoform induces PD-L1 expression to promote glioblastoma immune evasion.


Journal

Genes & genomics
ISSN: 2092-9293
Titre abrégé: Genes Genomics
Pays: Korea (South)
ID NLM: 101481027

Informations de publication

Date de publication:
12 2022
Historique:
received: 01 04 2022
accepted: 18 07 2022
pubmed: 3 8 2022
medline: 26 11 2022
entrez: 2 8 2022
Statut: ppublish

Résumé

Overexpression of PD-L1 is observed in many types of human cancer, including glioblastoma (GBM) and contributes to tumor immune evasion. In addition, GBM shows highly-activated aerobic glycolysis due to overexpression of phosphofructokinase 1 platelet isoform (PFKP), which the key enzyme in the glycolysis. However, it remains unclear whether the metabolic enzyme PFKP plays a role in the regulation of PD-L1 expression and GBM immune evasion. We aimed to investigate the non-metabolic role of PFKP in PD-L1 expression-induced GBM immune evasion. The mechanisms of PFKP-induced PD-L1 expression were studied by several experiments, including real-time PCR, immunoblot analysis, and ATP production. The coculture experiments using GBM cell and T cells were performed to evaluate the effect of PFKP on T cell activation. The clinical relationship between PFKP and PD-L1 was analyzed in The Cancer Genome Atlas (TCGA) database and in human GBM specimens. We showed that PFKP promotes EGFR activation-induced PD-L1 expression in human GBM cells. Importantly, we demonstrated that EGFR-phosphorylated PFKP Y64 plays an important role in AKT-mediated β-catenin transactivation and subsequent PD-L1 transcriptional expression, thereby enhancing the GBM immune evasion. In addition, based on our findings, the levels of PFKP Y64 phosphorylation are positively correlated with PD-L1 expression in human GBM specimens, highlighting the clinical significance of PFKP Y64 phosphorylation in the GBM immune evasion. These findings provide new mechanistic insight into the regulation of PD-L1 expression by a non-metabolic function of PFKP on tumor cells.

Sections du résumé

BACKGROUND
Overexpression of PD-L1 is observed in many types of human cancer, including glioblastoma (GBM) and contributes to tumor immune evasion. In addition, GBM shows highly-activated aerobic glycolysis due to overexpression of phosphofructokinase 1 platelet isoform (PFKP), which the key enzyme in the glycolysis. However, it remains unclear whether the metabolic enzyme PFKP plays a role in the regulation of PD-L1 expression and GBM immune evasion.
OBJECTIVE
We aimed to investigate the non-metabolic role of PFKP in PD-L1 expression-induced GBM immune evasion.
METHODS
The mechanisms of PFKP-induced PD-L1 expression were studied by several experiments, including real-time PCR, immunoblot analysis, and ATP production. The coculture experiments using GBM cell and T cells were performed to evaluate the effect of PFKP on T cell activation. The clinical relationship between PFKP and PD-L1 was analyzed in The Cancer Genome Atlas (TCGA) database and in human GBM specimens.
RESULTS
We showed that PFKP promotes EGFR activation-induced PD-L1 expression in human GBM cells. Importantly, we demonstrated that EGFR-phosphorylated PFKP Y64 plays an important role in AKT-mediated β-catenin transactivation and subsequent PD-L1 transcriptional expression, thereby enhancing the GBM immune evasion. In addition, based on our findings, the levels of PFKP Y64 phosphorylation are positively correlated with PD-L1 expression in human GBM specimens, highlighting the clinical significance of PFKP Y64 phosphorylation in the GBM immune evasion.
CONCLUSION
These findings provide new mechanistic insight into the regulation of PD-L1 expression by a non-metabolic function of PFKP on tumor cells.

Identifiants

pubmed: 35917090
doi: 10.1007/s13258-022-01291-4
pii: 10.1007/s13258-022-01291-4
doi:

Substances chimiques

B7-H1 Antigen 0
ErbB Receptors EC 2.7.10.1
Protein Isoforms 0
PFKP protein, human EC 2.7.1.11
Phosphofructokinase-1, Type C EC 2.7.1.-

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1509-1517

Informations de copyright

© 2022. The Author(s) under exclusive licence to The Genetics Society of Korea.

Références

Abiko K, Mandai M, Hamanishi J, Yoshioka Y, Matsumura N, Baba T, Yamaguchi K, Murakami R, Yamamoto A, Kharma B et al (2013) PD-L1 on tumor cells is induced in ascites and promotes peritoneal dissemination of ovarian cancer through CTL dysfunction. Clin Cancer Res 19:1363–1374
doi: 10.1158/1078-0432.CCR-12-2199 pubmed: 23340297
Boussiotis VA (2016) Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med 375:1767–1778
doi: 10.1056/NEJMra1514296 pubmed: 27806234 pmcid: 5575761
Callahan MK, Postow MA, Wolchok JD (2016) Targeting T cell co-receptors for cancer therapy. Immunity 44:1069–1078
doi: 10.1016/j.immuni.2016.04.023 pubmed: 27192570
Cancer Genome Atlas Research N (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068
doi: 10.1038/nature07385
Casey SC, Tong L, Li Y, Do R, Walz S, Fitzgerald KN, Gouw AM, Baylot V, Gutgemann I, Eilers M et al (2016) MYC regulates the antitumor immune response through CD47 and PD-L1. Science 352:227–231
doi: 10.1126/science.aac9935 pubmed: 26966191 pmcid: 4940030
Coelho MA, de Carne TS, Rana S, Zecchin D, Moore C, Molina-Arcas M, East P, Spencer-Dene B, Nye E, Barnouin K et al (2017) Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA. Immunity 47(1083–1099):e1086
Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K et al (2002) Tumor-associated B7–H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800
doi: 10.1038/nm730 pubmed: 12091876
Dorand RD, Nthale J, Myers JT, Barkauskas DS, Avril S, Chirieleison SM, Pareek TK, Abbott DW, Stearns DS, Letterio JJ et al (2016) Cdk5 disruption attenuates tumor PD-L1 expression and promotes antitumor immunity. Science 353:399–403
doi: 10.1126/science.aae0477 pubmed: 27463676 pmcid: 5051664
Du L, Lee JH, Jiang H, Wang C, Wang S, Zheng Z, Shao F, Xu D, Xia Y, Li J et al (2020) beta-Catenin induces transcriptional expression of PD-L1 to promote glioblastoma immune evasion. J Exp Med 217:13
doi: 10.1084/jem.20191115
Enzo E, Santinon G, Pocaterra A, Aragona M, Bresolin S, Forcato M, Grifoni D, Pession A, Zanconato F, Guzzo G et al (2015) Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO J 34:1349–1370
doi: 10.15252/embj.201490379 pubmed: 25796446 pmcid: 4491996
Goodenberger ML, Jenkins RB (2012) Genetics of adult glioma. Cancer Genet 205:613–621
doi: 10.1016/j.cancergen.2012.10.009 pubmed: 23238284
Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K, Higuchi T, Yagi H, Takakura K, Minato N et al (2007) Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci U S A 104:3360–3365
doi: 10.1073/pnas.0611533104 pubmed: 17360651 pmcid: 1805580
Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563–567
doi: 10.1038/nature14011 pubmed: 25428504 pmcid: 4836193
Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A 99:12293–12297
doi: 10.1073/pnas.192461099 pubmed: 12218188 pmcid: 129438
Jeon SM, Lim JS, Kim HR, Lee JH (2021) PFK activation is essential for the odontogenic differentiation of human dental pulp stem cells. Biochem Biophys Res Commun 544:52–59
doi: 10.1016/j.bbrc.2021.01.059 pubmed: 33516882
Jeon SM, Lim JS, Park SH, Kim HJ, Kim HR, Lee JH (2022) Blockade of PD-L1/PD-1 signaling promotes osteo-/odontogenic differentiation through Ras activation. Int J Oral Sci 14:18
doi: 10.1038/s41368-022-00168-2 pubmed: 35365595 pmcid: 8976080
Lee JH, Liu R, Li J, Zhang C, Wang Y, Cai Q, Qian X, Xia Y, Zheng Y, Piao Y et al (2017) Stabilization of phosphofructokinase 1 platelet isoform by AKT promotes tumorigenesis. Nat Commun 8:949
doi: 10.1038/s41467-017-00906-9 pubmed: 29038421 pmcid: 5643558
Lee JH, Liu R, Li J, Wang Y, Tan L, Li XJ, Qian X, Zhang C, Xia Y, Xu D et al (2018) EGFR-phosphorylated platelet isoform of phosphofructokinase 1 promotes PI3K activation. Mol Cell 70(197–210):e197
doi: 10.1016/j.molcel.2018.03.018
Lee JH, Shao F, Ling J, Lu S, Liu R, Du L, Chung JW, Koh SS, Leem SH, Shao J et al (2020) Phosphofructokinase 1 platelet isoform promotes beta-catenin transactivation for tumor development. Front Oncol 10:211
doi: 10.3389/fonc.2020.00211 pubmed: 32195176 pmcid: 7066116
Li CW, Lim SO, Xia W, Lee HH, Chan LC, Kuo CW, Khoo KH, Chang SS, Cha JH, Kim T et al (2016) Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun 7:12632
doi: 10.1038/ncomms12632 pubmed: 27572267 pmcid: 5013604
Li X, Egervari G, Wang Y, Berger SL, Lu Z (2018) Regulation of chromatin and gene expression by metabolic enzymes and metabolites. Nat Rev Mol Cell Biol 19:563–578
doi: 10.1038/s41580-018-0029-7 pubmed: 29930302 pmcid: 6907087
Lim SO, Li CW, Xia W, Cha JH, Chan LC, Wu Y, Chang SS, Lin WC, Hsu JM, Hsu YH et al (2016) Deubiquitination and Stabilization of PD-L1 by CSN5. Cancer Cell 30:925–939
doi: 10.1016/j.ccell.2016.10.010 pubmed: 27866850 pmcid: 5171205
Lu Z, Hunter T (2018) Metabolic kinases moonlighting as protein kinases. Trends Biochem Sci 43:301–310
doi: 10.1016/j.tibs.2018.01.006 pubmed: 29463470 pmcid: 5879014
Mor I, Cheung EC, Vousden KH (2011) Control of glycolysis through regulation of PFK1: old friends and recent additions. Cold Spring Harb Symp Quant Biol 76:211–216
doi: 10.1101/sqb.2011.76.010868 pubmed: 22096029
Moreno-Sanchez R, Rodriguez-Enriquez S, Marin-Hernandez A, Saavedra E (2007) Energy metabolism in tumor cells. FEBS J 274:1393–1418
doi: 10.1111/j.1742-4658.2007.05686.x pubmed: 17302740
Nomi T, Sho M, Akahori T, Hamada K, Kubo A, Kanehiro H, Nakamura S, Enomoto K, Yagita H, Azuma M et al (2007) Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res 13:2151–2157
doi: 10.1158/1078-0432.CCR-06-2746 pubmed: 17404099
Palsson-McDermott EM, Dyck L, Zaslona Z, Menon D, McGettrick AF, Mills KHG, O’Neill LA (2017) Pyruvate kinase M2 is required for the expression of the immune checkpoint PD-L1 in immune cells and tumors. Front Immunol 8:1300
doi: 10.3389/fimmu.2017.01300 pubmed: 29081778 pmcid: 5646285
Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ, Cachola KE, Murray JC, Tihan T, Jensen MC et al (2007) Loss of tumor suppressor PTEN function increases B7–H1 expression and immunoresistance in glioma. Nat Med 13:84–88
doi: 10.1038/nm1517 pubmed: 17159987
Shang M, Yang H, Yang R, Chen T, Fu Y, Li Y, Fang X, Zhang K, Zhang J, Li H et al (2021) The folate cycle enzyme MTHFD2 induces cancer immune evasion through PD-L1 up-regulation. Nat Commun 12:1940
doi: 10.1038/s41467-021-22173-5 pubmed: 33782411 pmcid: 8007798
Shao B, Li CW, Lim SO, Sun L, Lai YJ, Hou J, Liu C, Chang CW, Qiu Y, Hsu JM et al (2018) Deglycosylation of PD-L1 by 2-deoxyglucose reverses PARP inhibitor-induced immunosuppression in triple-negative breast cancer. Am J Cancer Res 8:1837–1846
pubmed: 30323975 pmcid: 6176188
Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348:56–61
doi: 10.1126/science.aaa8172 pubmed: 25838373
Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A (2017) Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168:707–723
doi: 10.1016/j.cell.2017.01.017 pubmed: 28187290 pmcid: 5391692
Sznol M, Chen L (2013) Antagonist antibodies to PD-1 and B7–H1 (PD-L1) in the treatment of advanced human cancer. Clin Cancer Res 19:1021–1034
doi: 10.1158/1078-0432.CCR-12-2063 pubmed: 23460533 pmcid: 3702373
Thompson RH, Gillett MD, Cheville JC, Lohse CM, Dong H, Webster WS, Krejci KG, Lobo JR, Sengupta S, Chen L et al (2004) Costimulatory B7–H1 in renal cell carcinoma patients: Indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci U S A 101:17174–17179
doi: 10.1073/pnas.0406351101 pubmed: 15569934 pmcid: 534606
Wintterle S, Schreiner B, Mitsdoerffer M, Schneider D, Chen L, Meyermann R, Weller M, Wiendl H (2003) Expression of the B7-related molecule B7–H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res 63:7462–7467
pubmed: 14612546
Xu D, Shao F, Bian X, Meng Y, Liang T, Lu Z (2021) The evolving landscape of noncanonical functions of metabolic enzymes in cancer and other pathologies. Cell Metab 33:33–50
doi: 10.1016/j.cmet.2020.12.015 pubmed: 33406403
Xue S, Hu M, Iyer V, Yu J (2017) Blocking the PD-1/PD-L1 pathway in glioma: a potential new treatment strategy. J Hematol Oncol 10:81
doi: 10.1186/s13045-017-0455-6 pubmed: 28388955 pmcid: 5384128
Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira NT, Tan Y, Ci Y, Wu F, Dai X et al (2018) Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 553:91–95
doi: 10.1038/nature25015 pubmed: 29160310

Auteurs

Silu Wang (S)

Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.

Su Hwan Park (SH)

Department of Health Sciences, The Graduate School, Dong-A University, Busan, 49315, Republic of Korea.

Je Sun Lim (JS)

Department of Health Sciences, The Graduate School, Dong-A University, Busan, 49315, Republic of Korea.

Yun-Yong Park (YY)

Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.

Linyong Du (L)

Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.

Jong-Ho Lee (JH)

Department of Health Sciences, The Graduate School, Dong-A University, Busan, 49315, Republic of Korea. Topljh19@dau.ac.kr.
Department of Biomedical Sciences, Dong-A University, Busan, 49315, Republic of Korea. Topljh19@dau.ac.kr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH