Associations between aerobic fitness, negative symptoms, cognitive deficits and brain structure in schizophrenia-a cross-sectional study.
Journal
Schizophrenia (Heidelberg, Germany)
ISSN: 2754-6993
Titre abrégé: Schizophrenia (Heidelb)
Pays: Germany
ID NLM: 9918367987006676
Informations de publication
Date de publication:
02 Aug 2022
02 Aug 2022
Historique:
received:
03
03
2022
accepted:
12
07
2022
entrez:
2
8
2022
pubmed:
3
8
2022
medline:
3
8
2022
Statut:
epublish
Résumé
Negative symptoms and cognitive deficits are common in individuals with schizophrenia, greatly affect their outcome, and have been associated with alterations in cerebral gray and white matter volume (GMV, WMV). In the last decade, aerobic endurance training has emerged as a promising intervention to alleviate these symptoms and improved aerobic fitness has been suggested as a key moderator variable. In the present study, we investigated, whether aerobic fitness is associated with fewer cognitive deficits and negative symptoms and with GMVs and WMVs in individuals with schizophrenia in a cross-sectional design. In the largest study to date on the implications of fitness in individuals with schizophrenia, 111 participants at two centers underwent assessments of negative symptoms, cognitive functioning, and aerobic fitness and 69 underwent additional structural magnetic resonance imaging. Multilevel Bayesian partial correlations were computed to quantify relationships between the variables of interest. The main finding was a positive association of aerobic fitness with right hippocampal GMV and WMVs in parahippocampal and several cerebellar regions. We found limited evidence for an association of aerobic fitness with cognitive functioning and negative symptoms. In summary, our results strengthen the notion that aerobic fitness and hippocampal plasticity are interrelated which holds implications for the design of exercise interventions in individuals with schizophrenia.
Identifiants
pubmed: 35918344
doi: 10.1038/s41537-022-00269-1
pii: 10.1038/s41537-022-00269-1
pmc: PMC9345912
doi:
Types de publication
Journal Article
Langues
eng
Pagination
63Subventions
Organisme : Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
ID : 01E1407E
Organisme : Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
ID : 01EE107E
Organisme : Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
ID : 01EE107E
Informations de copyright
© 2022. The Author(s).
Références
Fusar-Poli, P. et al. Treatments of negative symptoms in schizophrenia: meta-analysis of 168 randomized placebo-controlled trials. Schizophr. Bull. 41, 892–899 (2015).
pubmed: 25528757
doi: 10.1093/schbul/sbu170
Nielsen, R. E. et al. Second-generation antipsychotic effect on cognition in patients with schizophrenia–a meta-analysis of randomized clinical trials. Acta Psychiatr. Scand. 131, 185–196 (2015).
pubmed: 25597383
doi: 10.1111/acps.12374
Heilbronner, U., Samara, M., Leucht, S., Falkai, P. & Schulze, T. G. The longitudinal course of schizophrenia across the lifespan: clinical, cognitive, and neurobiological aspects. Harv. Rev. Psychiatry 24, 118–128 (2016).
pubmed: 26954596
pmcid: 5079232
doi: 10.1097/HRP.0000000000000092
Kirkpatrick, B., Fenton, W. S., Carpenter, W. T. Jr. & Marder, S. R. The NIMH-MATRICS consensus statement on negative symptoms. Schizophr. Bull. 32, 214–219 (2006).
pubmed: 16481659
pmcid: 2632223
doi: 10.1093/schbul/sbj053
American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5™. 5th edn. (American Psychiatric Publishing, Inc., 2013).
Green, M. F., Kern, R. S., Braff, D. L. & Mintz, J. Neurocognitive deficits and functional outcome in schizophrenia: are we measuring the “right stuff”? Schizophr. Bull. 26, 119–136 (2000).
pubmed: 10755673
doi: 10.1093/oxfordjournals.schbul.a033430
Lepage, M., Bodnar, M. & Bowie, C. R. Neurocognition: clinical and functional outcomes in schizophrenia. Can. J. Psychiatry 59, 5–12 (2014).
pubmed: 24444318
pmcid: 4079224
doi: 10.1177/070674371405900103
Ventura, J., Hellemann, G. S., Thames, A. D., Koellner, V. & Nuechterlein, K. H. Symptoms as mediators of the relationship between neurocognition and functional outcome in schizophrenia: a meta-analysis. Schizophr. Res. 113, 189–199 (2009).
pubmed: 19628375
pmcid: 2825750
doi: 10.1016/j.schres.2009.03.035
Tsang, H. W., Leung, A. Y., Chung, R. C., Bell, M. & Cheung, W. M. Review on vocational predictors: a systematic review of predictors of vocational outcomes among individuals with schizophrenia: an update since 1998. Aust. N.Z.J. Psychiatry 44, 495–504 (2010).
pubmed: 20482409
Van Eck, R. M., Burger, T. J., Vellinga, A., Schirmbeck, F. & de Haan, L. The relationship between clinical and personal recovery in patients with schizophrenia spectrum disorders: a systematic review and meta-analysis. Schizophr. Bull. 44, 631–642 (2018).
pubmed: 29036720
doi: 10.1093/schbul/sbx088
Boyer, P., Phillips, J. L., Rousseau, F. L. & Ilivitsky, S. Hippocampal abnormalities and memory deficits: new evidence of a strong pathophysiological link in schizophrenia. Brain Res. Rev. 54, 92–112 (2007).
pubmed: 17306884
doi: 10.1016/j.brainresrev.2006.12.008
Weinberger, D. R. Cell biology of the hippocampal formation in schizophrenia. Biol. Psychiatry 45, 395–402 (1999).
pubmed: 10071707
doi: 10.1016/S0006-3223(98)00331-X
Opitz, B. Memory function and the hippocampus. Front. Neurol. Neurosci. 34, 51–59 (2014).
pubmed: 24777130
doi: 10.1159/000356422
Haukvik, U. K., Tamnes, C. K., Söderman, E. & Agartz, I. Neuroimaging hippocampal subfields in schizophrenia and bipolar disorder: a systematic review and meta-analysis. J. Psychiatry Res. 104, 217–226 (2018).
doi: 10.1016/j.jpsychires.2018.08.012
Steen, R. G., Mull, C., McClure, R., Hamer, R. M. & Lieberman, J. A. Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies. Br. J. Psychiatry 188, 510–518 (2006).
pubmed: 16738340
doi: 10.1192/bjp.188.6.510
Brugger, S. P. & Howes, O. D. Heterogeneity and homogeneity of regional brain structure in schizophrenia: a meta-analysis. JAMA Psychiatry 74, 1104–1111 (2017).
pubmed: 28973084
pmcid: 5669456
doi: 10.1001/jamapsychiatry.2017.2663
Leonard, S. et al. Nicotinic receptor function in schizophrenia. Schizophr. Bull. 22, 431–445 (1996).
pubmed: 8873294
doi: 10.1093/schbul/22.3.431
Benes, F. M., McSparren, J., Bird, E. D., SanGiovanni, J. P. & Vincent, S. L. Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch. Gen. Psychiatry 48, 996–1001 (1991).
pubmed: 1747023
doi: 10.1001/archpsyc.1991.01810350036005
Tamminga, C. A., Southcott, S., Sacco, C., Wagner, A. D. & Ghose, S. Glutamate dysfunction in hippocampus: relevance of dentate gyrus and CA3 signaling. Schizophr. Bull. 38, 927–935 (2012).
pubmed: 22532703
pmcid: 3446225
doi: 10.1093/schbul/sbs062
Bobilev, A. M., Perez, J. M. & Tamminga, C. A. Molecular alterations in the medial temporal lobe in schizophrenia. Schizophr. Res. 217, 71–85 (2020).
pubmed: 31227207
doi: 10.1016/j.schres.2019.06.001
Collado-Torres, L. et al. Regional heterogeneity in gene expression, regulation, and coherence in the frontal cortex and hippocampus across development and schizophrenia. Neuron 103, 203–216.e208 (2019).
pubmed: 31174959
pmcid: 7000204
doi: 10.1016/j.neuron.2019.05.013
Goodkind, M. et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 72, 305–315 (2015).
pubmed: 25651064
pmcid: 4791058
doi: 10.1001/jamapsychiatry.2014.2206
Sha, Z., Wager, T. D., Mechelli, A. & He, Y. Common dysfunction of large-scale neurocognitive networks across psychiatric disorders. Biol. Psychiatry 85, 379–388 (2019).
pubmed: 30612699
doi: 10.1016/j.biopsych.2018.11.011
Brandl, F. et al. Specific substantial dysconnectivity in schizophrenia: a transdiagnostic multimodal meta-analysis of resting-state functional and structural magnetic resonance imaging studies. Biol. Psychiatry 85, 573–583 (2019).
pubmed: 30691673
doi: 10.1016/j.biopsych.2018.12.003
Antonova, E., Sharma, T., Morris, R. & Kumari, V. The relationship between brain structure and neurocognition in schizophrenia: a selective review. Schizophr. Res. 70, 117–145 (2004).
pubmed: 15329292
doi: 10.1016/j.schres.2003.12.002
Buckley, P. F. Neuroimaging of schizophrenia: structural abnormalities and pathophysiological implications. Neuropsychiatr. Dis. Treat. 1, 193 (2005).
pubmed: 18568069
pmcid: 2416751
Crespo-Facorro, B., Barbadillo, L., Pelayo-Terán, J. M. & Rodríguez-Sánchez, J. M. Neuropsychological functioning and brain structure in schizophrenia. Int. Rev. Psychiatry 19, 325–336 (2007).
pubmed: 17671866
doi: 10.1080/09540260701486647
Karantonis, J. A. et al. A systematic review of cognition-brain morphology relationships on the schizophrenia-bipolar disorder spectrum. Schizophr. Bull. 47, 1557–1600 (2021).
pubmed: 34097043
pmcid: 8530395
doi: 10.1093/schbul/sbab054
Uddin, L. Q., Nomi, J. S., Hébert-Seropian, B., Ghaziri, J. & Boucher, O. Structure and function of the human insula. J. Clin. Neurophysiol. 34, 300–306 (2017).
pubmed: 28644199
pmcid: 6032992
doi: 10.1097/WNP.0000000000000377
Xu, P., Chen, A., Li, Y., Xing, X. & Lu, H. Medial prefrontal cortex in neurological diseases. Physiol. Genomics 51, 432–442 (2019).
pubmed: 31373533
pmcid: 6766703
doi: 10.1152/physiolgenomics.00006.2019
Gallagher, M. & Chiba, A. A. The amygdala and emotion. Curr. Opin. Neurobiol. 6, 221–227 (1996).
pubmed: 8725964
doi: 10.1016/S0959-4388(96)80076-6
Janak, P. H. & Tye, K. M. From circuits to behaviour in the amygdala. Nature 517, 284–292 (2015).
pubmed: 25592533
pmcid: 4565157
doi: 10.1038/nature14188
Guessoum, S. B., Le Strat, Y., Dubertret, C. & Mallet, J. A transnosographic approach of negative symptoms pathophysiology in schizophrenia and depressive disorders. Prog. Neuro-psychopharmacol. Biol. Psychiatry 99, 109862 (2020).
doi: 10.1016/j.pnpbp.2020.109862
Pergola, G., Selvaggi, P., Trizio, S., Bertolino, A. & Blasi, G. The role of the thalamus in schizophrenia from a neuroimaging perspective. Neurosci. Biobehav. Rev. 54, 57–75 (2015).
pubmed: 25616183
doi: 10.1016/j.neubiorev.2015.01.013
Habas, C., Manto, M. & Cabaraux, P. The cerebellar thalamus. Cerebellum 18, 635–648 (2019).
pubmed: 30827014
Cao, H. & Cannon, T. D. Cerebellar dysfunction and schizophrenia: from “Cognitive Dysmetria” to a potential therapeutic target. Am. J. Psychiatry 176, 498–500 (2019).
pubmed: 31256620
doi: 10.1176/appi.ajp.2019.19050480
Wykes, T., Huddy, V., Cellard, C., McGurk, S. R. & Czobor, P. A meta-analysis of cognitive remediation for schizophrenia: methodology and effect sizes. Am. J. Psychiatry 168, 472–485 (2011).
pubmed: 21406461
doi: 10.1176/appi.ajp.2010.10060855
Aleman, A. et al. Treatment of negative symptoms: Where do we stand, and where do we go. Schizophr. Res. 186, 55–62 (2017).
pubmed: 27293137
doi: 10.1016/j.schres.2016.05.015
Lutgens, D., Gariepy, G. & Malla, A. Psychological and psychosocial interventions for negative symptoms in psychosis: systematic review and meta-analysis. Br. J. Psychiatry 210, 324–332 (2017).
pubmed: 28302699
doi: 10.1192/bjp.bp.116.197103
Chang, Y. K., Labban, J. D., Gapin, J. I. & Etnier, J. L. The effects of acute exercise on cognitive performance: a meta-analysis. Brain Res. 1453, 87–101 (2012).
pubmed: 22480735
doi: 10.1016/j.brainres.2012.02.068
Smith, P. J. et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom. Med. 72, 239 (2010).
pubmed: 20223924
pmcid: 2897704
doi: 10.1097/PSY.0b013e3181d14633
Parker, B. A. et al. Effect of exercise training on hippocampal volume in humans: a pilot study. Res. Q. Exerc. Sport 82, 585–591 (2011).
pubmed: 21957719
doi: 10.1080/02701367.2011.10599793
Angevaren, M., Aufdemkampe, G., Verhaar, H. J., Aleman, A. & Vanhees, L. Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst. Rev. Cd005381, https://doi.org/10.1002/14651858.CD005381.pub3 (2008).
Northey, J. M., Cherbuin, N., Pumpa, K. L., Smee, D. J. & Rattray, B. Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. Br. J. Sports Med. 52, 154–160 (2018).
pubmed: 28438770
doi: 10.1136/bjsports-2016-096587
Falck, R. S., Davis, J. C., Best, J. R., Crockett, R. A. & Liu-Ambrose, T. Impact of exercise training on physical and cognitive function among older adults: a systematic review and meta-analysis. Neurobiol. Aging 79, 119–130 (2019).
pubmed: 31051329
doi: 10.1016/j.neurobiolaging.2019.03.007
Esteban-Cornejo, I., Tejero-Gonzalez, C. M., Sallis, J. F. & Veiga, O. L. Physical activity and cognition in adolescents: a systematic review. J. Sci. Med. Sport 18, 534–539 (2015).
pubmed: 25108657
doi: 10.1016/j.jsams.2014.07.007
Gerber, M., Lindwall, M., Lindegård, A., Börjesson, M. & Jonsdottir, I. H. Cardiorespiratory fitness protects against stress-related symptoms of burnout and depression. Patient Educ. Couns. 93, 146–152 (2013).
pubmed: 23623176
doi: 10.1016/j.pec.2013.03.021
Schuch, F. B. et al. Are lower levels of cardiorespiratory fitness associated with incident depression? A systematic review of prospective cohort studies. Prev. Med. 93, 159–165 (2016).
pubmed: 27765659
doi: 10.1016/j.ypmed.2016.10.011
Evaristo, S. et al. Muscular fitness and cardiorespiratory fitness are associated with health-related quality of life: Results from labmed physical activity study. J. Exerc. Sci. Fit. 17, 55–61 (2019).
pubmed: 30740134
pmcid: 6353732
doi: 10.1016/j.jesf.2019.01.002
Rodriguez-Ayllon, M. et al. Role of physical activity and sedentary behavior in the mental health of preschoolers, children and adolescents: a systematic review and meta-analysis. Sports Med. 49, 1383–1410 (2019).
pubmed: 30993594
doi: 10.1007/s40279-019-01099-5
White, R. L. et al. Domain-specific physical activity and mental health: a meta-analysis. Am. J. Prev. Med. 52, 653–666 (2017).
pubmed: 28153647
doi: 10.1016/j.amepre.2016.12.008
Posadzki, P. et al. Exercise/physical activity and health outcomes: an overview of Cochrane systematic reviews. BMC Public Health 20, 1724 (2020).
pubmed: 33198717
pmcid: 7670795
doi: 10.1186/s12889-020-09855-3
Kandola, A., Hendrikse, J., Lucassen, P. J. & Yucel, M. Aerobic exercise as a tool to improve hippocampal plasticity and function in humans: practical implications for mental health treatment. Front. Hum. Neurosci. 10, 373 (2016).
pubmed: 27524962
pmcid: 4965462
doi: 10.3389/fnhum.2016.00373
Baumeister, S. E. et al. Associations of leisure-time and occupational physical activity and cardiorespiratory fitness with incident and recurrent major depressive disorder, depressive symptoms, and incident anxiety in a general population. J. Clin. Psychiatry 78, e41–e47 (2017).
pubmed: 28129498
doi: 10.4088/JCP.15m10474
Wittfeld, K. et al. Cardiorespiratory fitness and gray matter volume in the temporal, frontal, and cerebellar regions in the general population. Mayo Clinic Proc. 95, 44–56 (2020).
doi: 10.1016/j.mayocp.2019.05.030
Firth, J. et al. Effect of aerobic exercise on hippocampal volume in humans: a systematic review and meta-analysis. NeuroImage 166, 230–238 (2018).
pubmed: 29113943
doi: 10.1016/j.neuroimage.2017.11.007
Sexton, C. E. et al. A systematic review of MRI studies examining the relationship between physical fitness and activity and the white matter of the ageing brain. NeuroImage 131, 81–90 (2016).
pubmed: 26477656
doi: 10.1016/j.neuroimage.2015.09.071
Firth, J., Cotter, J., Elliott, R., French, P. & Yung, A. R. A systematic review and meta-analysis of exercise interventions in schizophrenia patients. Psychol. Med. 45, 1343–1361 (2015).
pubmed: 25650668
doi: 10.1017/S0033291714003110
Malchow, B. et al. The effects of physical exercise in schizophrenia and affective disorders. Eur. Arch. Psychiatry Clin. Neurosci. 263, 451–467 (2013).
pubmed: 23873090
doi: 10.1007/s00406-013-0423-2
Sabe, M., Kaiser, S. & Sentissi, O. Physical exercise for negative symptoms of schizophrenia: Systematic review of randomized controlled trials and meta-analysis. Gen. Hosp. Psychiatry 62, 13–20 (2019).
pubmed: 31751931
doi: 10.1016/j.genhosppsych.2019.11.002
Vogel, J. S. et al. The effect of mind-body and aerobic exercise on negative symptoms in schizophrenia: a meta-analysis. Psychiatry Res. 279, 295–305 (2019).
pubmed: 30879703
doi: 10.1016/j.psychres.2019.03.012
Dauwan, M., Begemann, M. J., Heringa, S. M. & Sommer, I. E. Exercise improves clinical symptoms, quality of life, global functioning, and depression in schizophrenia: a systematic review and meta-analysis. Schizophr. Bull. 42, 588–599 (2016).
pubmed: 26547223
doi: 10.1093/schbul/sbv164
Firth, J., Cotter, J., Carney, R. & Yung, A. R. The pro-cognitive mechanisms of physical exercise in people with schizophrenia. Br. J. Pharmacol. 174, 3161–3172 (2017).
pubmed: 28261797
pmcid: 5595765
doi: 10.1111/bph.13772
Firth, J. et al. Aerobic Exercise Improves Cognitive Functioning in People with Schizophrenia: A Systematic Review and Meta-Analysis. Schizophr. Bull. 43, 546–556 (2017).
pubmed: 27521348
Vancampfort, D., Rosenbaum, S., Ward, P. B. & Stubbs, B. Exercise improves cardiorespiratory fitness in people with schizophrenia: a systematic review and meta-analysis. Schizophr. Res. 169, 453–457 (2015).
pubmed: 26475214
doi: 10.1016/j.schres.2015.09.029
Vancampfort, D. et al. Cardiorespiratory fitness in severe mental illness: a systematic review and meta-analysis. Sports Med. 47, 343–352 (2017).
pubmed: 27299747
doi: 10.1007/s40279-016-0574-1
Kimhy, D. et al. Aerobic fitness and body mass index in individuals with schizophrenia: implications for neurocognition and daily functioning. Psychiatry Res. 220, 784–791 (2014).
pubmed: 25219618
pmcid: 4258141
doi: 10.1016/j.psychres.2014.08.052
Vancampfort, D. et al. Promotion of cardiorespiratory fitness in schizophrenia: a clinical overview and meta-analysis. Acta Psychiatr. Scand. 132, 131–143 (2015).
pubmed: 25740655
doi: 10.1111/acps.12407
Vancampfort, D. et al. Neurobiological effects of physical exercise in schizophrenia: a systematic review. Disabil. Rehab. 36, 1749–1754 (2014).
doi: 10.3109/09638288.2013.874505
Van der Stouwe, E. et al. Neural correlates of exercise training in individuals with schizophrenia and in healthy individuals: a systematic review. NeuroImage: Clin. 19, 287–301 (2018).
doi: 10.1016/j.nicl.2018.04.018
Ho, A. J. et al. The effects of physical activity, education, and body mass index on the aging brain. Hum. Brain Mapp. 32, 1371–1382 (2011).
pubmed: 20715081
doi: 10.1002/hbm.21113
Schmitt, A., Reich-Erkelenz, D., Hasan, A. & Falkai, P. Aerobic exercise in mental disorders: from basic mechanisms to treatment recommendations. Eur. Arch. Psychiatry Clin. Neurosci. 269, 483–484 (2019).
pubmed: 31250087
doi: 10.1007/s00406-019-01037-6
Linn, J., Wiesmann, M. & Brückmann, H. Atlas Klinische Neuroradiologie des Gehirns. (Springer-Verlag, 2011).
Hans, J., Kachlík, D. & Tubbs, R. S. An illustrated terminologia neuroanatomica: a concise encyclopedia of human neuroanatomy. (Springer, 2018).
Colcombe, S. & Kramer, A. F. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol. Sci. 14, 125–130 (2003).
pubmed: 12661673
doi: 10.1111/1467-9280.t01-1-01430
Pajonk, F. G. et al. Hippocampal plasticity in response to exercise in schizophrenia. Arch. Gen. Psychiatry 67, 133–143 (2010).
pubmed: 20124113
doi: 10.1001/archgenpsychiatry.2009.193
Erickson, K. I. et al. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA 108, 3017–3022 (2011).
pubmed: 21282661
pmcid: 3041121
doi: 10.1073/pnas.1015950108
Li, M. Y. et al. The effects of aerobic exercise on the structure and function of DMN-related brain regions: a systematic review. Int. J. Neurosci. 127, 634–649 (2017).
pubmed: 27412353
doi: 10.1080/00207454.2016.1212855
Erickson, K. I., Leckie, R. L. & Weinstein, A. M. Physical activity, fitness, and gray matter volume. Neurobiol. Aging 35, S20–28 (2014).
pubmed: 24952993
doi: 10.1016/j.neurobiolaging.2014.03.034
Maurus, I. et al. Neurobiological effects of aerobic exercise, with a focus on patients with schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 269, 499–515 (2019).
pubmed: 31115660
doi: 10.1007/s00406-019-01025-w
Lincoln, T. M., Dollfus, S. & Lyne, J. Current developments and challenges in the assessment of negative symptoms. Schizophr. Res. 186, 8–18 (2017).
pubmed: 26960948
doi: 10.1016/j.schres.2016.02.035
Storch Jakobsen, A. et al. Associations between clinical and psychosocial factors and metabolic and cardiovascular risk factors in overweight patients with schizophrenia spectrum disorders - Baseline and two-years findings from the CHANGE trial. Schizophr. Res. 199, 96–102 (2018).
pubmed: 29501386
doi: 10.1016/j.schres.2018.02.047
Firth, J. et al. Motivating factors and barriers towards exercise in severe mental illness: a systematic review and meta-analysis. Psychol. Med. 46, 2869–2881 (2016).
pubmed: 27502153
pmcid: 5080671
doi: 10.1017/S0033291716001732
Bouchard, C., Rankinen, T. & Timmons, J. A. Genomics and genetics in the biology of adaptation to exercise. Compr. Physiol. 1, 1603 (2011).
pubmed: 23733655
pmcid: 3938186
doi: 10.1002/cphy.c100059
Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15, 273–289 (2002).
pubmed: 11771995
doi: 10.1006/nimg.2001.0978
Erickson, K. I. et al. The brain-derived neurotrophic factor Val66Met polymorphism moderates an effect of physical activity on working memory performance. Psychol. Sci. 24, 1770–1779 (2013).
pubmed: 23907543
doi: 10.1177/0956797613480367
Papiol, S. et al. Polygenic burden associated to oligodendrocyte precursor cells and radial glia influences the hippocampal volume changes induced by aerobic exercise in schizophrenia patients. Transl. Psychiatry 9, 1–8 (2019).
doi: 10.1038/s41398-019-0618-z
Papiol, S. et al. Polygenic risk has an impact on the structural plasticity of hippocampal subfields during aerobic exercise combined with cognitive remediation in multi-episode schizophrenia. Transl. Psychiatry 7, e1159 (2017).
pubmed: 28654095
pmcid: 5537649
doi: 10.1038/tp.2017.131
Maurus et al. Aerobic endurance training to improve cognition and enhance recovery in schizophrenia: design and methodology of a multicenter randomized controlled trial. Eur. Arch. Psychiatry Clin. Neurosci. https://doi.org/10.1007/s00406-020-01175-2 (2020).
Kay, S. R., Fiszbein, A. & Opler, L. A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 13, 261–276 (1987).
pubmed: 3616518
doi: 10.1093/schbul/13.2.261
Addington, D., Addington, J. & Maticka-Tyndale, E. Assessing depression in schizophrenia: the Calgary Depression scale. Br. J. Psychiatry, 39–44, https://doi.org/10.1192/S0007125000292581 (1993).
Reitan, R. & Wolfson, D. The Halstead-Reitan Neuropsychological Test Battery: Theory and Clinical Interpretation., (Neuropsychology Press, 1985).
Tewes, U. HAWIE-R: Hamburg-Wechsler-Intelligenztest für Erwachsene, Revision 1991. (Huber, 1994).
Helmstaedter, C. VLMT Verbaler Lern-und Merkfähigkeitstest: Manual. (Beltz-Test, 2001).
Hurford, I. M., Marder, S. R., Keefe, R. S., Reise, S. P. & Bilder, R. M. A brief cognitive assessment tool for schizophrenia: construction of a tool for clinicians. Schizophr. Bull. 37, 538–545 (2011).
pubmed: 19776205
doi: 10.1093/schbul/sbp095
Ekman, P. & Friesen, W. V. Detecting deception from the body or face. J. Pers. Soc. Psychol. 29, 288 (1974).
doi: 10.1037/h0036006
Hargreaves, M. & Spriet, L. L. Skeletal muscle energy metabolism during exercise. Nat. Metab. 2, 817–828 (2020).
pubmed: 32747792
doi: 10.1038/s42255-020-0251-4
Chamari, K. & Padulo, J. ‘Aerobic’and ‘Anaerobic’terms used in exercise physiology: a critical terminology reflection. Sports Med. Open 1, 1–4 (2015).
doi: 10.1186/s40798-015-0012-1
Medicine, A. C. O. S. ACSM’s guidelines for exercise testing and prescription. (Lippincott Williams & Wilkins, 2013).
Güllich, A. & Krüger, M. Sport: Das Lehrbuch für das Sportstudium. Vol. 1 (Springer, 2013).
Faude, O., Kindermann, W. & Meyer, T. Lactate threshold concepts: how valid are they? Sports Med. 39, 469–490 (2009).
pubmed: 19453206
doi: 10.2165/00007256-200939060-00003
RStudio: integrated development environment for R v. 1.1.453 (Boston, MA, 2015).
Makowski, D., Ben-Sachar, M., Patil, I. & Lüdecke, D. Methods and algorithms for correlation analysis in R. J. Open Source Softw. 5, 2306 (2020).
doi: 10.21105/joss.02306
Wagenmakers, E.-J. et al. Bayesian inference for psychology. Part I: theoretical advantages and practical ramifications. Psychon. Bull. Rev. 25, 35–57 (2018).
pubmed: 28779455
doi: 10.3758/s13423-017-1343-3
Leucht, S., Samara, M., Heres, S. & Davis, J. M. Dose equivalents for antipsychotic drugs: the DDD method. Schizophr. Bull. 42, 90–94 (2016).
doi: 10.1093/schbul/sbv167
Ly, A., Verhagen, J. & Wagenmakers, E.-J. Harold Jeffreys’s default Bayes factor hypothesis tests: explanation, extension, and application in psychology. J. Math. Psychol. 72, 19–32 (2016).
doi: 10.1016/j.jmp.2015.06.004
Makowski, D., Ben-Shachar, M. S., Chen, S. H. A. & Lüdecke, D. Indices of effect existence and significance in the bayesian framework. Front. Psychol. 10, 2767–2767 (2019).
pubmed: 31920819
pmcid: 6914840
doi: 10.3389/fpsyg.2019.02767
Schönbrodt, F. D. & Wagenmakers, E.-J. Bayes factor design analysis: planning for compelling evidence. Psychon. Bull. Rev. 25, 128–142 (2018).
pubmed: 28251595
doi: 10.3758/s13423-017-1230-y
Stefan, A., Gronau, Q., Schönbrodt, F. & Wagenmakers, E.-J. A tutorial on Bayes factor design analysis using an informed prior. Behav. Res. Methods 51, https://doi.org/10.3758/s13428-018-01189-8 (2019).
Schönbrodt, F. & Stefan, A. BFDA: An R package for Bayes factor design analysis (version 0.4.0), https://github.com/nicebread/BFDA (2018).
Esteban, O. et al. MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites. PloS One 12, e0184661 (2017).
pubmed: 28945803
pmcid: 5612458
doi: 10.1371/journal.pone.0184661
Cox, R. W. et al. A (sort of) new image data format standard: NiFTI-1. Vol. 22 (2004).
Li, X., Morgan, P. S., Ashburner, J., Smith, J. & Rorden, C. The first step for neuroimaging data analysis: DICOM to NIfTI conversion. J. Neurosci. Methods 264, 47–56 (2016).
pubmed: 26945974
doi: 10.1016/j.jneumeth.2016.03.001
Karali, T. et al. NAMNIs: Neuromodulation And Multimodal NeuroImaging software (0.3). Zenodo (2021).