Spinal muscular atrophy.
Journal
Nature reviews. Disease primers
ISSN: 2056-676X
Titre abrégé: Nat Rev Dis Primers
Pays: England
ID NLM: 101672103
Informations de publication
Date de publication:
04 08 2022
04 08 2022
Historique:
accepted:
23
06
2022
entrez:
4
8
2022
pubmed:
5
8
2022
medline:
9
8
2022
Statut:
epublish
Résumé
Spinal muscular atrophy (SMA) is a neurodegenerative disorder caused by mutations in SMN1 (encoding survival motor neuron protein (SMN)). Reduced expression of SMN leads to loss of α-motor neurons, severe muscle weakness and often early death. Standard-of-care recommendations for multidisciplinary supportive care of SMA were established in the past few decades. However, improved understanding of the pathogenetic mechanisms of SMA has led to the development of different therapeutic approaches. Three treatments that increase SMN expression by distinct molecular mechanisms, administration routes and tissue biodistributions have received regulatory approval with others in clinical development. The advent of the new therapies is redefining standards of care as in many countries most patients are treated with one of the new therapies, leading to the identification of emerging new phenotypes of SMA and a renewed characterization of demographics owing to improved patient survival.
Identifiants
pubmed: 35927425
doi: 10.1038/s41572-022-00380-8
pii: 10.1038/s41572-022-00380-8
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
52Subventions
Organisme : NINDS NIH HHS
ID : R35 NS122306
Pays : United States
Informations de copyright
© 2022. Springer Nature Limited.
Références
Ogino, S., Leonard, D. G., Rennert, H., Ewens, W. J. & Wilson, R. B. Genetic risk assessment in carrier testing for spinal muscular atrophy. Am. J. Med. Genet. 110, 301–307 (2002).
pubmed: 12116201
Pearn, J. Incidence, prevalence, and gene frequency studies of chronic childhood spinal muscular atrophy. J. Med. Genet. 15, 409–413 (1978).
pubmed: 745211
pmcid: 1013753
Sugarman, E. A. et al. Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy: clinical laboratory analysis of >72,400 specimens. Eur. J. Hum. Genet. 20, 27–32 (2012).
pubmed: 21811307
Mailman, M. D. et al. Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2. Genet. Med. 4, 20–26 (2002).
pubmed: 11839954
Verhaart, I. E. C. et al. A multi-source approach to determine SMA incidence and research ready population. J. Neurol. 264, 1465–1473 (2017).
pubmed: 28634652
pmcid: 5502065
Verhaart, I. E. C. et al. Prevalence, incidence and carrier frequency of 5q-linked spinal muscular atrophy – a literature review. Orphanet J. Rare Dis. 12, 124 (2017). This comprehensive review describes current data on carrier frequency and prevalence of SMA, using the current classification. The incidence of SMA and new phenotypes is likely to emerge as newborn screening becomes more widely initiated and treatment is started very early after birth.
pubmed: 28676062
pmcid: 5496354
Hale, J. E. et al. Massachusetts’ findings from statewide newborn screening for spinal muscular atrophy. Int. J. Neonatal Screen. https://doi.org/10.3390/ijns7020026 (2021).
doi: 10.3390/ijns7020026
pubmed: 34449530
pmcid: 8395917
Kay, D. M. et al. Implementation of population-based newborn screening reveals low incidence of spinal muscular atrophy. Genet. Med. 22, 1296–1302 (2020).
pubmed: 32418989
Kariyawasam, D. S. T., Russell, J. S., Wiley, V., Alexander, I. E. & Farrar, M. A. The implementation of newborn screening for spinal muscular atrophy: the Australian experience. Genet. Med. 22, 557–565 (2020).
pubmed: 31607747
Vill, K. et al. Newborn screening for spinal muscular atrophy in Germany: clinical results after 2 years. Orphanet J. Rare Dis. 16, 153 (2021). This report presents incidence data for SMA in Germany (~1 in 6,910 births), with nearly half of those with two copies of SMN2 having early features of the disease at the initial visit, and discusses the challenges of treating these patients based on their SMN2 copy number.
pubmed: 33789695
pmcid: 8011100
Prior, T. W. et al. Newborn and carrier screening for spinal muscular atrophy. Am. J. Med. Genet. A 152A, 1608–1616 (2010).
pubmed: 20578137
Ogino, S., Wilson, R. B. & Gold, B. New insights on the evolution of the SMN1 and SMN2 region: simulation and meta-analysis for allele and haplotype frequency calculations. Eur. J. Hum. Genet. 12, 1015–1023 (2004).
pubmed: 15470363
Dangouloff, T., Vrscaj, E., Servais, L., Osredkar, D. & Group, S. N. W. S. Newborn screening programs for spinal muscular atrophy worldwide: where we stand and where to go. Neuromuscul. Disord. 31, 574–582 (2021).
pubmed: 33985857
Lefebvre, S. et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80, 155–165 (1995).
pubmed: 7813012
Lorson, C. L. & Androphy, E. J. An exonic enhancer is required for inclusion of an essential exon in the SMA-determining gene SMN. Hum. Mol. Genet. 9, 259–265 (2000).
pubmed: 10607836
Lorson, C. L., Hahnen, E., Androphy, E. J. & Wirth, B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc. Natl Acad. Sci. USA 96, 6307–6311 (1999).
pubmed: 10339583
pmcid: 26877
Monani, U. R. et al. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum. Mol. Genet. 8, 1177–1183 (1999).
pubmed: 10369862
Lefebvre, S. et al. Correlation between severity and SMN protein level in spinal muscular atrophy. Nat. Genet. 16, 265–269 (1997).
pubmed: 9207792
Wirth, B. Spinal muscular atrophy: in the challenge lies a solution. Trends Neurosci. 44, 306–322 (2021). This comprehensive review discusses the evolution over the past 25 years in the understanding of the pathobiology of SMA, genotype–phenotype relationships and treatment strategies.
pubmed: 33423791
van der Steege, G. et al. Apparent gene conversions involving the SMN gene in the region of the spinal muscular atrophy locus on chromosome 5. Am. J. Hum. Genet. 59, 834–838 (1996).
pubmed: 8808598
pmcid: 1914786
Echaniz-Laguna, A., Miniou, P., Bartholdi, D. & Melki, J. The promoters of the survival motor neuron gene (SMN) and its copy (SMNc) share common regulatory elements. Am. J. Hum. Genet. 64, 1365–1370 (1999).
pubmed: 10205267
pmcid: 1377872
Jodelka, F. M., Ebert, A. D., Duelli, D. M. & Hastings, M. L. A feedback loop regulates splicing of the spinal muscular atrophy-modifying gene, SMN2. Hum. Mol. Genet. 19, 4906–4917 (2010).
pubmed: 20884664
pmcid: 2989896
Monani, U. R., McPherson, J. D. & Burghes, A. H. Promoter analysis of the human centromeric and telomeric survival motor neuron genes (SMNC and SMNT). Biochim. Biophys. Acta 1445, 330–336 (1999).
pubmed: 10366716
Kernochan, L. E. et al. The role of histone acetylation in SMN gene expression. Hum. Mol. Genet. 14, 1171–1182 (2005).
pubmed: 15772088
Farooq, F. et al. Prolactin increases SMN expression and survival in a mouse model of severe spinal muscular atrophy via the STAT5 pathway. J. Clin. Invest. 121, 3042–3050 (2011).
pubmed: 21785216
pmcid: 3148738
McCormack, N. M. et al. A high-throughput genome-wide RNAi screen identifies modifiers of survival motor neuron protein. Cell Rep. 35, 109125 (2021).
pubmed: 33979606
pmcid: 8679797
Marasco, L. E. et al. Counteracting chromatin effects of a splicing-correcting antisense oligonucleotide improves its therapeutic efficacy in spinal muscular atrophy. Cell 185, 2057–2070.e15 (2022).
pubmed: 35688133
Woo, C. J. et al. Gene activation of SMN by selective disruption of lncRNA-mediated recruitment of PRC2 for the treatment of spinal muscular atrophy. Proc. Natl Acad. Sci. USA 114, E1509–E1518 (2017).
pubmed: 28193854
pmcid: 5338378
d’Ydewalle, C. et al. The antisense transcript SMN-AS1 regulates SMN expression and is a novel therapeutic target for spinal muscular atrophy. Neuron 93, 66–79 (2017).
pubmed: 28017471
Ottesen, E. W., Seo, J., Singh, N. N. & Singh, R. N. A multilayered control of the human survival motor neuron gene expression by Alu elements. Front. Microbiol. 8, 2252 (2017).
pubmed: 29187847
pmcid: 5694776
Avila, A. M. et al. Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy. J. Clin. Invest. 117, 659–671 (2007).
pubmed: 17318264
pmcid: 1797603
Chang, J. G. et al. Treatment of spinal muscular atrophy by sodium butyrate. Proc. Natl Acad. Sci. USA 98, 9808–9813 (2001).
pubmed: 11504946
pmcid: 55534
Herzel, L., Ottoz, D. S. M., Alpert, T. & Neugebauer, K. M. Splicing and transcription touch base: co-transcriptional spliceosome assembly and function. Nat. Rev. Mol. Cell Biol. 18, 637–650 (2017).
pubmed: 28792005
pmcid: 5928008
Pagliarini, V., Guerra, M., Di Rosa, V., Compagnucci, C. & Sette, C. Combined treatment with the histone deacetylase inhibitor LBH589 and a splice-switch antisense oligonucleotide enhances SMN2 splicing and SMN expression in spinal muscular atrophy cells. J. Neurochem. 153, 264–275 (2020).
pubmed: 31811660
Cartegni, L. & Krainer, A. R. Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat. Genet. 30, 377–384 (2002).
pubmed: 11925564
Kashima, T. & Manley, J. L. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat. Genet. 34, 460–463 (2003).
pubmed: 12833158
Singh, R. N. & Singh, N. N. Mechanism of splicing regulation of spinal muscular atrophy genes. Adv. Neurobiol. 20, 31–61 (2018).
pubmed: 29916015
pmcid: 6026014
Prior, T. W. et al. A positive modifier of spinal muscular atrophy in the SMN2 gene. Am. J. Hum. Genet. 85, 408–413 (2009).
pubmed: 19716110
pmcid: 2771537
Wu, X. et al. A-44G transition in SMN2 intron 6 protects patients with spinal muscular atrophy. Hum. Mol. Genet. 26, 2768–2780 (2017).
pubmed: 28460014
pmcid: 5886194
Auslander, N. et al. The GENDULF algorithm: mining transcriptomics to uncover modifier genes for monogenic diseases. Mol. Syst. Biol. 16, e9701 (2020).
pubmed: 33438800
pmcid: 7754056
Ruggiu, M. et al. A role for SMN exon 7 splicing in the selective vulnerability of motor neurons in spinal muscular atrophy. Mol. Cell Biol. 32, 126–138 (2012).
pubmed: 22037760
pmcid: 3255708
Feldkotter, M., Schwarzer, V., Wirth, R., Wienker, T. F. & Wirth, B. Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am. J. Hum. Genet. 70, 358–368 (2002).
pubmed: 11791208
Calucho, M. et al. Correlation between SMA type and SMN2 copy number revisited: an analysis of 625 unrelated Spanish patients and a compilation of 2834 reported cases. Neuromuscul. Disord. 28, 208–215 (2018). A detailed genotpe–phenotype analysis of the Spanish SMA population is presented, melded with a comprehensive literature review.
pubmed: 29433793
Arkblad, E., Tulinius, M., Kroksmark, A. K., Henricsson, M. & Darin, N. A population-based study of genotypic and phenotypic variability in children with spinal muscular atrophy. Acta Paediatr. 98, 865–872 (2009).
pubmed: 19154529
Prior, T. W., Swoboda, K. J., Scott, H. D. & Hejmanowski, A. Q. Homozygous SMN1 deletions in unaffected family members and modification of the phenotype by SMN2. Am. J. Med. Genet. A 130A, 307–310 (2004).
pubmed: 15378550
Oprea, G. E. et al. Plastin 3 is a protective modifier of autosomal recessive spinal muscular atrophy. Science 320, 524–527 (2008).
pubmed: 18440926
pmcid: 4908855
Riessland, M. et al. Neurocalcin delta suppression protects against spinal muscular atrophy in humans and across species by restoring impaired endocytosis. Am. J. Hum. Genet. 100, 297–315 (2017).
pubmed: 28132687
pmcid: 5294679
Kaifer, K. A. et al. Plastin-3 extends survival and reduces severity in mouse models of spinal muscular atrophy. JCI Insight 2, e89970 (2017).
pubmed: 28289706
pmcid: 5333955
Singh, R. N., Howell, M. D., Ottesen, E. W. & Singh, N. N. Diverse role of survival motor neuron protein. Biochim. Biophys. Acta Gene Regul. Mech. 1860, 299–315 (2017). This comprehensive review discusses the many roles of SMN protein in RNA metabolism.
pubmed: 28095296
Le, T. T. et al. SMNΔ7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum. Mol. Genet. 14, 845–857 (2005).
pubmed: 15703193
Burnett, B. G. et al. Regulation of SMN protein stability. Mol. Cell Biol. 29, 1107–1115 (2009).
pubmed: 19103745
Cho, S. & Dreyfuss, G. A degron created by SMN2 exon 7 skipping is a principal contributor to spinal muscular atrophy severity. Genes Dev. 24, 438–442 (2010).
pubmed: 20194437
pmcid: 2827839
Kwon, D. Y. et al. The E3 ubiquitin ligase mind bomb 1 ubiquitinates and promotes the degradation of survival of motor neuron protein. Mol. Biol. Cell 24, 1863–1871 (2013).
pubmed: 23615451
pmcid: 3681692
Powis, R. A. et al. Systemic restoration of UBA1 ameliorates disease in spinal muscular atrophy. JCI Insight 1, e87908 (2016).
pubmed: 27699224
pmcid: 5033939
Riboldi, G. M. et al. Sumoylation regulates the assembly and activity of the SMN complex. Nat. Commun. 12, 5040 (2021).
pubmed: 34413305
pmcid: 8376998
Renvoise, B., Querol, G., Verrier, E. R., Burlet, P. & Lefebvre, S. A role for protein phosphatase PP1γ in SMN complex formation and subnuclear localization to Cajal bodies. J. Cell Sci. 125, 2862–2874 (2012).
pubmed: 22454514
Han, K. J. et al. Monoubiquitination of survival motor neuron regulates its cellular localization and Cajal body integrity. Hum. Mol. Genet. 25, 1392–1405 (2016).
pubmed: 26908624
pmcid: 4787908
Grimmler, M. et al. Phosphorylation regulates the activity of the SMN complex during assembly of spliceosomal U snRNPs. EMBO Rep. 6, 70–76 (2005).
pubmed: 15592453
Petri, S., Grimmler, M., Over, S., Fischer, U. & Gruss, O. J. Dephosphorylation of survival motor neurons (SMN) by PPM1G/PP2Cγ governs Cajal body localization and stability of the SMN complex. J. Cell Biol. 179, 451–465 (2007).
pubmed: 17984321
pmcid: 2064792
Coovert, D. D. et al. The survival motor neuron protein in spinal muscular atrophy. Hum. Mol. Genet. 6, 1205–1214 (1997).
pubmed: 9259265
Zhang, H. et al. Multiprotein complexes of the survival of motor neuron protein SMN with Gemins traffic to neuronal processes and growth cones of motor neurons. J. Neurosci. 26, 8622–8632 (2006).
pubmed: 16914688
pmcid: 4956918
Donlin-Asp, P. G. et al. The survival of motor neuron protein acts as a molecular chaperone for mRNP assembly. Cell Rep. 18, 1660–1673 (2017).
pubmed: 28199839
pmcid: 5492976
Pellizzoni, L., Yong, J. & Dreyfuss, G. Essential role for the SMN complex in the specificity of snRNP assembly. Science 298, 1775–1779 (2002).
pubmed: 12459587
Tisdale, S. et al. SMN is essential for the biogenesis of U7 small nuclear ribonucleoprotein and 3’-end formation of histone mRNAs. Cell Rep. 5, 1187–1195 (2013).
pubmed: 24332368
Winkler, C. et al. Reduced U snRNP assembly causes motor axon degeneration in an animal model for spinal muscular atrophy. Genes Dev. 19, 2320–2330 (2005).
pubmed: 16204184
pmcid: 1240041
Zhang, Z. et al. SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing. Cell 133, 585–600 (2008).
pubmed: 18485868
pmcid: 2446403
Fallini, C., Donlin-Asp, P. G., Rouanet, J. P., Bassell, G. J. & Rossoll, W. Deficiency of the survival of motor neuron protein impairs mRNA localization and local translation in the growth cone of motor neurons. J. Neurosci. 36, 3811–3820 (2016).
pubmed: 27030765
pmcid: 4812137
Rossoll, W. et al. Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of β-actin mRNA in growth cones of motoneurons. J. Cell Biol. 163, 801–812 (2003).
pubmed: 14623865
pmcid: 2173668
Donlin-Asp, P. G., Bassell, G. J. & Rossoll, W. A role for the survival of motor neuron protein in mRNP assembly and transport. Curr. Opin. Neurobiol. 39, 53–61 (2016).
pubmed: 27131421
Hao le, T. et al. HuD and the survival motor neuron protein interact in motoneurons and are essential for motoneuron development, function, and mRNA regulation. J. Neurosci. 37, 11559–11571 (2017).
pubmed: 29061699
pmcid: 5707763
Akten, B. et al. Interaction of survival of motor neuron (SMN) and HuD proteins with mRNA cpg15 rescues motor neuron axonal deficits. Proc. Natl Acad. Sci. USA 108, 10337–10342 (2011).
pubmed: 21652774
pmcid: 3121858
Strasswimmer, J. et al. Identification of survival motor neuron as a transcriptional activator-binding protein. Hum. Mol. Genet. 8, 1219–1226 (1999).
pubmed: 10369867
Lauria, F. et al. SMN-primed ribosomes modulate the translation of transcripts related to spinal muscular atrophy. Nat. Cell Biol. 22, 1239–1251 (2020).
pubmed: 32958857
pmcid: 7610479
Torres-Benito, L. et al. NCALD antisense oligonucleotide therapy in addition to nusinersen further ameliorates spinal muscular atrophy in mice. Am. J. Hum. Genet. 105, 221–230 (2019).
pubmed: 31230718
pmcid: 6612520
Upadhyay, A. et al. Neurocalcin delta knockout impairs adult neurogenesis whereas half reduction is not pathological. Front. Mol. Neurosci. 12, 19 (2019).
pubmed: 30853885
pmcid: 6396726
Wolff, L. et al. Plastin 3 in health and disease: a matter of balance. Cell Mol. Life Sci. 78, 5275–5301 (2021).
pubmed: 34023917
pmcid: 8257523
Miller, N., Shi, H., Zelikovich, A. S. & Ma, Y. C. Motor neuron mitochondrial dysfunction in spinal muscular atrophy. Hum. Mol. Genet. 25, 3395–3406 (2016).
pubmed: 27488123
pmcid: 5179954
Boyd, P. J. et al. Bioenergetic status modulates motor neuron vulnerability and pathogenesis in a zebrafish model of spinal muscular atrophy. PLoS Genet. 13, e1006744 (2017).
pubmed: 28426667
pmcid: 5417717
Thelen, M. P., Wirth, B. & Kye, M. J. Mitochondrial defects in the respiratory complex I contribute to impaired translational initiation via ROS and energy homeostasis in SMA motor neurons. Acta Neuropathol. Commun. 8, 223 (2020).
pubmed: 33353564
pmcid: 7754598
Ripolone, M. et al. Impaired muscle mitochondrial biogenesis and myogenesis in spinal muscular atrophy. JAMA Neurol. 72, 666–675 (2015).
pubmed: 25844556
pmcid: 4944827
Habets, L. E. et al. Magnetic resonance reveals mitochondrial dysfunction and muscle remodelling in spinal muscular atrophy. Brain https://doi.org/10.1093/brain/awab411 (2021).
doi: 10.1093/brain/awab411
pmcid: 9128825
Wadman, R. I. et al. A comparative study of SMN protein and mRNA in blood and fibroblasts in patients with spinal muscular atrophy and healthy controls. PLoS ONE 11, e0167087 (2016).
pubmed: 27893852
pmcid: 5125671
Poirier, A. et al. Risdiplam distributes and increases SMN protein in both the central nervous system and peripheral organs. Pharmacol. Res. Perspect. 6, e00447 (2018).
pubmed: 30519476
pmcid: 6262736
Burlet, P. et al. The distribution of SMN protein complex in human fetal tissues and its alteration in spinal muscular atrophy. Hum. Mol. Genet. 7, 1927–1933 (1998).
pubmed: 9811937
Ramos, D. M. et al. Age-dependent SMN expression in disease-relevant tissue and implications for SMA treatment. J. Clin. Invest. 129, 4817–4831 (2019). Human fetal and infant autopsy samples from both unaffected individuals and those with SMA were analysed for SMN protein and transcript levels. SMN protein expression is highest in late fetal and early postnatal development.
pubmed: 31589162
pmcid: 6819103
Gabanella, F., Carissimi, C., Usiello, A. & Pellizzoni, L. The activity of the spinal muscular atrophy protein is regulated during development and cellular differentiation. Hum. Mol. Genet. 14, 3629–3642 (2005).
pubmed: 16236758
Ji, C. et al. Interaction of 7SK with the Smn complex modulates snRNP production. Nat. Commun. 12, 1278 (2021).
pubmed: 33627647
pmcid: 7904863
Gavrilina, T. O. et al. Neuronal SMN expression corrects spinal muscular atrophy in severe SMA mice while muscle-specific SMN expression has no phenotypic effect. Hum. Mol. Genet. 17, 1063–1075 (2008).
pubmed: 18178576
Van Alstyne, M. et al. Gain of toxic function by long-term AAV9-mediated SMN overexpression in the sensorimotor circuit. Nat. Neurosci. 24, 930–940 (2021). This study examined overexpression of SMN in a mouse model of SMA via AAV9–SMN gene transduction and identified chronic development of sensory and motor impairment.
pubmed: 33795885
pmcid: 8254787
Thomsen, G. et al. Biodistribution of onasemnogene abeparvovec DNA, mRNA and SMN protein in human tissue. Nat. Med. 27, 1701–1711 (2021).
pubmed: 34608334
Ling, K. K., Lin, M. Y., Zingg, B., Feng, Z. & Ko, C. P. Synaptic defects in the spinal and neuromuscular circuitry in a mouse model of spinal muscular atrophy. PLoS ONE 5, e15457 (2010).
pubmed: 21085654
pmcid: 2978709
Mentis, G. Z. et al. Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy. Neuron 69, 453–467 (2011). Experiments in a mouse model for SMA support the authors’ proposal that SMA is a poly-neuronal network disorder, not purely a disease of motor neurons.
pubmed: 21315257
pmcid: 3044334
Fletcher, E. V. et al. Reduced sensory synaptic excitation impairs motor neuron function via Kv2.1 in spinal muscular atrophy. Nat. Neurosci. 20, 905–916 (2017).
pubmed: 28504671
pmcid: 5487291
Kong, L. et al. Impaired prenatal motor axon development necessitates early therapeutic intervention in severe SMA. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.abb6871 (2021). Human autopsy samples from infants with SMA type 1 were studied for axonal development and demonstrated features of developmental arrest, followed by neurodegeneration, suggesting that there is a narrow therapeutic window to rescue the motor neurons after birth.
doi: 10.1126/scitranslmed.abb6871
pubmed: 34936382
pmcid: 8878148
Kariya, S. et al. Reduced SMN protein impairs maturation of the neuromuscular junctions in mouse models of spinal muscular atrophy. Hum. Mol. Genet. 17, 2552–2569 (2008). Studies on the neuromuscular junction in a mouse model of severe SMA demonstrated early presynaptic morphological changes and functional impairment.
pubmed: 18492800
pmcid: 2722888
Murray, L. M. et al. Selective vulnerability of motor neurons and dissociation of pre- and post-synaptic pathology at the neuromuscular junction in mouse models of spinal muscular atrophy. Hum. Mol. Genet. 17, 949–962 (2008).
pubmed: 18065780
Kong, L. et al. Impaired synaptic vesicle release and immaturity of neuromuscular junctions in spinal muscular atrophy mice. J. Neurosci. 29, 842–851 (2009).
pubmed: 19158308
pmcid: 2746673
Lee, Y. I., Mikesh, M., Smith, I., Rimer, M. & Thompson, W. Muscles in a mouse model of spinal muscular atrophy show profound defects in neuromuscular development even in the absence of failure in neuromuscular transmission or loss of motor neurons. Dev. Biol. 356, 432–444 (2011).
pubmed: 21658376
pmcid: 3143211
Buettner, J. M. et al. Central synaptopathy is the most conserved feature of motor circuit pathology across spinal muscular atrophy mouse models. iScience 24, 103376 (2021).
pubmed: 34825141
pmcid: 8605199
Rodriguez-Muela, N. et al. Single-cell analysis of SMN reveals its broader role in neuromuscular disease. Cell Rep. 18, 1484–1498 (2017).
pubmed: 28178525
pmcid: 5463539
Ling, K. K., Gibbs, R. M., Feng, Z. & Ko, C. P. Severe neuromuscular denervation of clinically relevant muscles in a mouse model of spinal muscular atrophy. Hum. Mol. Genet. 21, 185–195 (2012).
pubmed: 21968514
Darras, B. T. et al. Neurofilament as a potential biomarker for spinal muscular atrophy. Ann. Clin. Transl. Neurol. 6, 932–944 (2019). This study identified elevated plasma phosphorylated neurofilament heavy chain levels in children with SMA compared with typically developing children, which declined under treatment with nusinersen, suggesting that this could serve as an informative prognostic and predictive biomarker.
pubmed: 31139691
pmcid: 6530526
Simon, C. M. et al. Converging mechanisms of p53 activation drive motor neuron degeneration in spinal muscular atrophy. Cell Rep. 21, 3767–3780 (2017).
pubmed: 29281826
pmcid: 5747328
Van Alstyne, M. et al. Dysregulation of Mdm2 and Mdm4 alternative splicing underlies motor neuron death in spinal muscular atrophy. Genes Dev. 32, 1045–1059 (2018).
pubmed: 30012555
pmcid: 6075148
Genabai, N. K. et al. Genetic inhibition of JNK3 ameliorates spinal muscular atrophy. Hum. Mol. Genet. 24, 6986–7004 (2015).
pubmed: 26423457
pmcid: 4654054
Pilato, C. M. et al. Motor neuron loss in SMA is not associated with somal stress-activated JNK/c-Jun signaling. Hum. Mol. Genet. 28, 3282–3292 (2019).
pubmed: 31272106
pmcid: 6859432
Fayzullina, S. & Martin, L. J. Skeletal muscle DNA damage precedes spinal motor neuron DNA damage in a mouse model of spinal muscular atrophy (SMA). PLoS ONE 9, e93329 (2014).
pubmed: 24667816
pmcid: 3965546
Jangi, M. et al. SMN deficiency in severe models of spinal muscular atrophy causes widespread intron retention and DNA damage. Proc. Natl Acad. Sci. USA 114, E2347–E2356 (2017).
pubmed: 28270613
pmcid: 5373344
Ng, S. Y. et al. Genome-wide RNA-Seq of human motor neurons implicates selective ER stress activation in spinal muscular atrophy. Cell Stem Cell 17, 569–584 (2015).
pubmed: 26321202
pmcid: 4839185
Govoni, A., Gagliardi, D., Comi, G. P. & Corti, S. Time is motor neuron: therapeutic window and its correlation with pathogenetic mechanisms in spinal muscular atrophy. Mol. Neurobiol. 55, 6307–6318 (2018).
pubmed: 29294245
Hamilton, G. & Gillingwater, T. H. Spinal muscular atrophy: going beyond the motor neuron. Trends Mol. Med. 19, 40–50 (2013).
pubmed: 23228902
Yeo, C. J. J. & Darras, B. T. Overturning the paradigm of spinal muscular atrophy as just a motor neuron disease. Pediatr. Neurol. 109, 12–19 (2020). The authors discuss SMA as a systemic disease, beyond a motor neuron disorder, and the implications for needing to consider targeting non-neuronal tissues with SMN-enhancing drugs.
pubmed: 32409122
Hernandez-Gerez, E., Dall’Angelo, S., Collinson, J. M., Fleming, I. N. & Parson, S. H. Widespread tissue hypoxia dysregulates cell and metabolic pathways in SMA. Ann. Clin. Transl. Neurol. 7, 1580–1593 (2020).
pubmed: 32790171
pmcid: 7480929
Somers, E. et al. Vascular defects and spinal cord hypoxia in spinal muscular atrophy. Ann. Neurol. 79, 217–230 (2016).
pubmed: 26506088
Hua, Y. et al. Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature 478, 123–126 (2011).
pubmed: 21979052
pmcid: 3191865
Kray, K. M., McGovern, V. L., Chugh, D., Arnold, W. D. & Burghes, A. H. M. Dual SMN inducing therapies can rescue survival and motor unit function in symptomatic 7SMA mice. Neurobiol. Dis. 159, 105488 (2021).
pubmed: 34425216
Zhou, H. et al. Myostatin inhibition in combination with antisense oligonucleotide therapy improves outcomes in spinal muscular atrophy. J. Cachexia Sarcopenia Muscle 11, 768–782 (2020). Adding myostatin inhibition to antisense oligonucleotide-mediated SMN enhancement in a mouse model of severe SMA generated a synergistic increase in survival, muscle mass, NMJ and motor function, and sensory neurons. These animal data support a combinatorial treatment for SMA.
pubmed: 32031328
pmcid: 7296258
Barrett, D. et al. A randomized phase 1 safety, pharmacokinetic and pharmacodynamic study of the novel myostatin inhibitor apitegromab (SRK-015): a potential treatment for spinal muscular atrophy. Adv. Ther. 38, 3203–3222 (2021).
pubmed: 33963971
pmcid: 8189951
Kizina, K. et al. Cognitive impairment in adult patients with 5q-associated spinal muscular atrophy. Brain Sci. https://doi.org/10.3390/brainsci11091184 (2021).
doi: 10.3390/brainsci11091184
pubmed: 34573264
pmcid: 8470195
Masson, R., Brusa, C., Scoto, M. & Baranello, G. Brain, cognition, and language development in spinal muscular atrophy type 1: a scoping review. Dev. Med. Child Neurol. 63, 527–536 (2021).
pubmed: 33452688
Schorling, D. C. et al. Discrepancy in redetermination of SMN2 copy numbers in children with SMA. Neurology 93, 267–269 (2019).
pubmed: 31235659
Boemer, F. et al. Newborn screening for SMA in Southern Belgium. Neuromuscul. Disord. 29, 343–349 (2019).
pubmed: 31030938
Zhao, S. et al. Next generation sequencing is a highly reliable method to analyze exon 7 deletion of survival motor neuron 1 (SMN1) gene. Sci. Rep. 12, 223 (2022).
pubmed: 34997153
pmcid: 8741787
Gregg, A. R. et al. Screening for autosomal recessive and X-linked conditions during pregnancy and preconception: a practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 23, 1793–1806 (2021).
pubmed: 34285390
Aharoni, S. et al. Impact of a national population-based carrier-screening program on spinal muscular atrophy births. Neuromuscul. Disord. 30, 970–974 (2020).
pubmed: 33218846
Sun, Y., Kong, X., Zhao, Z. & Zhao, X. Mutation analysis of 419 family and prenatal diagnosis of 339 cases of spinal muscular atrophy in China. BMC Med. Genet. 21, 133 (2020).
pubmed: 32552676
pmcid: 7302341
Almeida-Porada, G. et al. In utero gene therapy consensus statement from the IFeTIS. Mol. Ther. 27, 705–707 (2019).
pubmed: 30837116
pmcid: 6453510
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03761849 (2022).
De Vivo, D. C. et al. Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: interim efficacy and safety results from the phase 2 NURTURE study. Neuromuscul. Disord. 29, 842–856 (2019). Nusinersen is the first of the three SMN-enhancing drugs to demonstrate a marked improvement in survival and function when treatment is started shortly after birth, in the presymptomatic or early symptomatic state of SMA.
pubmed: 31704158
pmcid: 7127286
Strauss, K. A. et al. Onasemnogene abeparvovec for presymptomatic infants with two copies of SMN2 at risk for spinal muscular atrophy type 1: the phase III SPR1NT trial. Nat. Med. https://doi.org/10.1038/s41591-022-01866-4 (2022).
doi: 10.1038/s41591-022-01866-4
pubmed: 35715567
pmcid: 9205287
Strauss, K. A. et al. Onasemnogene abeparvovec for presymptomatic infants with three copies of SMN2 at risk for spinal muscular atrophy: the phase III SPR1NT trial. Nat. Med. https://doi.org/10.1038/s41591-022-01867-3 (2022).
doi: 10.1038/s41591-022-01867-3
pubmed: 35715567
pmcid: 9205287
Wang, C. H. et al. Consensus statement for standard of care in spinal muscular atrophy. J. Child Neurol. 22, 1027–1049 (2007).
pubmed: 17761659
Finkel, R. S. et al. Diagnosis and management of spinal muscular atrophy: part 2: pulmonary and acute care; medications, supplements and immunizations; other organ systems; and ethics. Neuromuscul. Disord. 28, 197–207 (2018). This revision of the standard-of-care guidelines for SMA provides a template for the comprehensive management of patients with SMA.
pubmed: 29305137
Mercuri, E. et al. Diagnosis and management of spinal muscular atrophy: part 1: recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul. Disord. 28, 103–115 (2018). This revision of the standard-of-care guidelines for SMA provides a template for the comprehensive management of patients with SMA.
pubmed: 29290580
Glanzman, A. M. et al. Validation of the Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND). Pediatr. Phys. Ther. 23, 322–326 (2011).
pubmed: 22090068
Haataja, L. et al. Optimality score for the neurologic examination of the infant at 12 and 18 months of age. J. Pediatr. 135, 153–161 (1999).
pubmed: 10431108
Glanzman, A. M. et al. Validation of the expanded Hammersmith Functional Motor Scale in spinal muscular atrophy type II and III. J. Child Neurol. 26, 1499–1507 (2011).
pubmed: 21940700
Mazzone, E. S. et al. Revised upper limb module for spinal muscular atrophy: development of a new module. Muscle Nerve 55, 869–874 (2017).
pubmed: 27701745
Coratti, G. et al. Revised upper limb module in type II and III spinal muscular atrophy: 24-month changes. Neuromuscul. Disord. https://doi.org/10.1016/j.nmd.2021.10.009 (2021).
doi: 10.1016/j.nmd.2021.10.009
pubmed: 34980538
Coratti, G. et al. Clinical variability in spinal muscular atrophy type III. Ann. Neurol. 88, 1109–1117 (2020).
pubmed: 32926458
Coratti, G. et al. Age related treatment effect in type II spinal muscular atrophy pediatric patients treated with nusinersen. Neuromuscul. Disord. 31, 596–602 (2021).
pubmed: 34099377
Coratti, G. et al. Age and baseline values predict 12 and 24-month functional changes in type 2 SMA. Neuromuscul. Disord. 30, 756–764 (2020).
pubmed: 32900576
Coratti, G. et al. Different trajectories in upper limb and gross motor function in spinal muscular atrophy. Muscle Nerve 64, 552–559 (2021).
pubmed: 34327716
pmcid: 9291175
Pera, M. C. et al. Nusinersen in pediatric and adult patients with type III spinal muscular atrophy. Ann. Clin. Transl. Neurol. 8, 1622–1634 (2021).
pubmed: 34165911
pmcid: 8351459
Pera, M. C. et al. Revised upper limb module for spinal muscular atrophy: 12 month changes. Muscle Nerve 59, 426–430 (2019).
pubmed: 30677148
Yeo, C. J. J., Simmons, Z., De Vivo, D. C. & Darras, B. T. Ethical perspectives on treatment options with spinal muscular atrophy patients. Ann. Neurol. 91, 305–316 (2022).
pubmed: 34981567
pmcid: 9305104
Finkel, R. S. et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N. Engl. J. Med. 377, 1723–1732 (2017). This study presents the positive results of nusinersen treatment in patients with early-infantile onset SMA, with improved survival and motor function. and a favourable safety profile. This study provided the most convincing data in support of gaining regulatory approval for this drug.
pubmed: 29091570
Mercuri, E. et al. Nusinersen versus sham control in later-onset spinal muscular atrophy. N. Engl. J. Med. 378, 625–635 (2018). This study presents the positive results of nusinersen treatment in patients with late-infantile onset SMA, with improved motor function and a favourable safety profile. It provides support for the application for regulatory approval.
pubmed: 29443664
Tiberi, E. et al. Nusinersen in type 0 spinal muscular atrophy: should we treat? Ann. Clin. Transl. Neurol. https://doi.org/10.1002/acn3.51126 (2020).
doi: 10.1002/acn3.51126
pubmed: 33147378
pmcid: 7732235
Pane, M. et al. Nusinersen in type 1 spinal muscular atrophy: twelve-month real-world data. Ann. Neurol. 86, 443–451 (2019).
pubmed: 31228281
Aragon-Gawinska, K. et al. Nusinersen in patients older than 7 months with spinal muscular atrophy type 1: a cohort study. Neurology 91, e1312–e1318 (2018).
pubmed: 30158155
Pechmann, A. et al. Treatment with nusinersen – challenges regarding the indication for children with SMA type 1. J. Neuromuscul. Dis. 7, 41–46 (2020).
pubmed: 31744015
Szabo, L. et al. Efficacy of nusinersen in type 1, 2 and 3 spinal muscular atrophy: real world data from Hungarian patients. Eur. J. Paediatr. Neurol. 27, 37–42 (2020).
pubmed: 32456992
Audic, F. et al. Effects of nusinersen after one year of treatment in 123 children with SMA type 1 or 2: a French real-life observational study. Orphanet J. Rare Dis. 15, 148 (2020).
pubmed: 32532349
pmcid: 7291731
Gomez-Garcia de la Banda, M. et al. Assessment of respiratory muscles and motor function in children with SMA treated by nusinersen. Pediatr. Pulmonol. 56, 299–306 (2021).
pubmed: 33118682
Jochmann, E. et al. Experiences from treating seven adult 5q spinal muscular atrophy patients with nusinersen. Ther. Adv. Neurol. Disord. 13, 1756286420907803 (2020).
pubmed: 32180828
pmcid: 7059230
Maggi, L. et al. Nusinersen safety and effects on motor function in adult spinal muscular atrophy type 2 and 3. J. Neurol. Neurosurg. Psychiatry 91, 1166–1174 (2020).
pubmed: 32917822
Hagenacker, T. et al. Nusinersen in adults with 5q spinal muscular atrophy: a non-interventional, multicentre, observational cohort study. Lancet Neurol. 19, 317–325 (2020). Real-world data from Germany for adults with SMA who were treated with nusinersen, which demonstrated a positive response in motor function and acceptable tolerability of the related lumbar punctures necessary to administer the drug.
pubmed: 32199097
Walter, M. C. et al. Safety and treatment effects of nusinersen in longstanding adult 5q-SMA type 3 – a prospective observational study. J. Neuromuscul. Dis. 6, 453–465 (2019).
pubmed: 31594243
pmcid: 6918909
Kessler, T. et al. Cerebrospinal fluid proteomic profiling in nusinersen-treated patients with spinal muscular atrophy. J. Neurochem. https://doi.org/10.1111/jnc.14953 (2020).
doi: 10.1111/jnc.14953
pubmed: 31903607
Yeo, C. J. J., Simeone, S. D., Townsend, E. L., Zhang, R. Z. & Swoboda, K. J. Prospective cohort study of nusinersen treatment in adults with spinal muscular atrophy. J. Neuromuscul. Dis. https://doi.org/10.3233/JND-190453 (2020).
doi: 10.3233/JND-190453
pubmed: 32333595
Osmanovic, A. et al. Treatment expectations and patient-reported outcomes of nusinersen therapy in adult spinal muscular atrophy. J. Neurol. 267, 2398–2407 (2020).
pubmed: 32361837
pmcid: 7359174
De Wel, B. et al. Nusinersen treatment significantly improves hand grip strength, hand motor function and MRC sum scores in adult patients with spinal muscular atrophy types 3 and 4. J. Neurol. https://doi.org/10.1007/s00415-020-10223-9 (2020).
doi: 10.1007/s00415-020-10223-9
pubmed: 32935160
Kizina, K. et al. Fatigue in adults with spinal muscular atrophy under treatment with nusinersen. Sci. Rep. 10, 11069 (2020).
pubmed: 32632203
pmcid: 7338415
Moshe-Lilie, O. et al. Nusinersen in adult patients with spinal muscular atrophy: observations from a single center. Neurology 95, e413–e416 (2020).
pubmed: 32665408
Konersman, C. G. et al. Nusinersen treatment of older children and adults with spinal muscular atrophy. Neuromuscul. Disord. 31, 183–193 (2021).
pubmed: 33608138
Mendonca, R. H. et al. Real-world data from nusinersen treatment for patients with later-onset spinal muscular atrophy: a single center experience. J. Neuromuscul. Dis. 8, 101–108 (2021).
pubmed: 33074187
Duong, T. et al. Nusinersen treatment in adults with spinal muscular atrophy. Neurol. Clin. Pract. https://doi.org/10.1212/cpj.0000000000001033 (2021).
doi: 10.1212/cpj.0000000000001033
pubmed: 34476123
pmcid: 8382360
Veerapandiyan, A. et al. Nusinersen for older patients with spinal muscular atrophy: a real-world clinical setting experience. Muscle Nerve 61, 222–226 (2020).
pubmed: 31773738
Jedrzejowska, M. Advances in newborn screening and presymptomatic diagnosis of spinal muscular atrophy. Degener. Neurol. Neuromuscul. Dis. 10, 39–47 (2020).
pubmed: 33364872
pmcid: 7751307
Biogen. First quarter 2021: Financial results and business update. Biogen https://investors.biogen.com/static-files/a957e5ba-325f-4a37-bfc8-43cecfc64620 (2021).
Coratti, G. et al. Motor function in type 2 and 3 SMA patients treated with nusinersen: a critical review and meta-analysis. Orphanet J. Rare Dis. 16, 430 (2021).
pubmed: 34645478
pmcid: 8515709
Mendell, J. R. et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 377, 1713–1722 (2017). This is the first of the studies of onasemnogene abeparvovec, demonstrating improved survival and motor function compared with historic controls, and a favourable safety profile. This phase I study was largely responsible for gaining regulatory approval for this drug.
pubmed: 29091557
Mendell, J. R. et al. Five-year extension results of the phase 1 START trial of onasemnogene abeparvovec in spinal muscular atrophy. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2021.1272 (2021).
doi: 10.1001/jamaneurol.2021.1272
pubmed: 33999158
pmcid: 8129901
Day, J. W. et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. 20, 284–293 (2021).
pubmed: 33743238
Mercuri, E. et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. 20, 832–841 (2021).
pubmed: 34536405
Friese, J. et al. Safety monitoring of gene therapy for spinal muscular atrophy with onasemnogene abeparvovec – a single centre experience. J. Neuromuscul. Dis. 8, 209–216 (2021).
pubmed: 33427694
pmcid: 8075402
Chand, D. H. et al. Thrombotic microangiopathy following onasemnogene abeparvovec for spinal muscular atrophy: a case series. J. Pediatr. 231, 265–268 (2021).
pubmed: 33259859
Matesanz, S. E. et al. Clinical course in a patient with spinal muscular atrophy type 0 treated with nusinersen and onasemnogene abeparvovec. J. Child Neurol. 35, 717–723 (2020).
pubmed: 32515646
Weiss, C. et al. Gene replacement therapy with onasemnogene abeparvovec in children with spinal muscular atrophy aged 24 months or younger and bodyweight up to 15 kg: an observational cohort study. Lancet Child Adolesc. Health 6, 17–27 (2022).
pubmed: 34756190
Chand, D. et al. Hepatotoxicity following administration of onasemnogene abeparvovec (AVXS-101) for the treatment of spinal muscular atrophy. J. Hepatol. 74, 560–566 (2021).
pubmed: 33186633
Baranello, G. et al. Risdiplam in type 1 spinal muscular atrophy. N. Engl. J. Med. 384, 915–923 (2021).
pubmed: 33626251
Darras, B. T. et al. Risdiplam-treated infants with type 1 spinal muscular atrophy versus historical controls. N. Engl. J. Med. 385, 427–435 (2021). This study of risdiplam in patients with early-infantile onset SMA type 1 demonstrated improved survival and motor function, and a favourable safety profile, and supported gaining regulatory approval for this drug.
pubmed: 34320287
Mercuri, E. et al. Safety and efficacy of once-daily risdiplam in type 2 and non-ambulant type 3 spinal muscular atrophy (SUNFISH part 2): a phase 3, double-blind, randomised, placebo-controlled trial. Lancet Neurol. 21, 42–52 (2022). This study presents the positive results of risdiplam treatment in patients with late-infantile onset SMA type 2, with improved motor function and a favourable safety profile. It provided support for the application for regulatory approval.
pubmed: 34942136
Glascock, J. et al. Revised recommendations for the treatment of infants diagnosed with spinal muscular atrophy via newborn screening who have 4 copies of SMN2. J. Neuromuscul. Dis. 7, 97–100 (2020). This survey of SMA clinicians resulted in an algorithm for approaching treatment decisions for young infants with SMA identified by newborn screening. This updated expert opinion document recommended treatment as soon as feasible for all patients with two, three or four copies of SMN2.
pubmed: 32007960
pmcid: 7175931
Bach, J. R., Vega, J., Majors, J. & Friedman, A. Spinal muscular atrophy type 1 quality of life. Am. J. Phys. Med. Rehabil. 82, 137–142 (2003).
pubmed: 12544760
de Oliveira, C. M. & Araujo, A. P. Self-reported quality of life has no correlation with functional status in children and adolescents with spinal muscular atrophy. Eur. J. Paediatr. Neurol. 15, 36–39 (2011).
pubmed: 20800519
Kruitwagen-Van Reenen, E. T. et al. Correlates of health related quality of life in adult patients with spinal muscular atrophy. Muscle Nerve 54, 850–855 (2016).
pubmed: 27074445
Jeppesen, J., Madsen, A., Marquardt, J. & Rahbek, J. Living and ageing with spinal muscular atrophy type 2: observations among an unexplored patient population. Dev. Neurorehabil. 13, 10–18 (2010).
pubmed: 20067341
Iannaccone, S. T. et al. The PedsQL in pediatric patients with spinal muscular atrophy: feasibility, reliability, and validity of the pediatric quality of life inventory generic core scales and neuromuscular module. Neuromuscul. Disord. 19, 805–812 (2009).
pubmed: 19846309
pmcid: 2796341
Landfeldt, E. et al. Quality of life of patients with spinal muscular atrophy: a systematic review. Eur. J. Paediatr. Neurol. 23, 347–356 (2019).
pubmed: 30962132
Gunther, R. et al. Patient-reported prevalence of non-motor symptoms is low in adult patients suffering from 5q spinal muscular atrophy. Front. Neurol. 10, 1098 (2019).
pubmed: 31736847
pmcid: 6838202
Messina, S. et al. A critical review of patient and parent caregiver oriented tools to assess health-related quality of life, activity of daily living and caregiver burden in spinal muscular atrophy. Neuromuscul. Disord. 29, 940–950 (2019).
pubmed: 31791871
Messina, S. et al. Health-related quality of life and functional changes in DMD: a 12-month longitudinal cohort study. Neuromuscul. Disord. 26, 189–196 (2016).
pubmed: 26916554
pmcid: 4819956
Mercuri, E. et al. Patient and parent oriented tools to assess health-related quality of life, activity of daily living and caregiver burden in SMA. Rome, 13 July 2019. Neuromuscul. Disord. 30, 431–436 (2020). This workshop report summarizes the current state for patient-reported outcome measures for patients with SMA, highlighting those metrics of clinical utility and the gaps and limitations that need to be addressed.
pubmed: 32386743
Pasternak, A. et al. Rasch analysis of the pediatric evaluation of disability inventory-computer adaptive test (PEDI-CAT) item bank for children and young adults with spinal muscular atrophy. Muscle Nerve 54, 1097–1107 (2016).
pubmed: 27121348
Sansone, V. A. et al. The spinal muscular atrophy health index: Italian validation of a disease-specific outcome measure. Neuromuscul. Disord. 31, 409–418 (2021).
pubmed: 33773884
Bartels, B. et al. Assessment of fatigability in patients with spinal muscular atrophy: development and content validity of a set of endurance tests. BMC Neurol. 19, 21 (2019).
pubmed: 30738436
pmcid: 6368708
Dunaway Young, S. et al. Perceived fatigue in spinal muscular atrophy: a pilot study. J. Neuromuscul. Dis. 6, 109–117 (2019).
pubmed: 30562906
Montes, J. et al. Fatigue leads to gait changes in spinal muscular atrophy. Muscle Nerve 43, 485–488 (2011).
pubmed: 21404286
Darras, B. T., Markowitz, J. A., Monani, U. R., De Vivo, D. C. in Neuromuscular Disorders of Infancy, Childhood and Adolescence: A Clinician’s Approach (eds Darras, B. T., Jones, H. R. Jr, Ryan, M. M. & De Vivo, D. C.) 117–145 (Elsevier, 2015).
Jedrzejowska, M. et al. Novel point mutations in survival motor neuron 1 gene expand the spectrum of phenotypes observed in spinal muscular atrophy patients. Neuromuscul. Disord. 24, 617–623 (2014).
pubmed: 24844453
Douglas, A. G. & Wood, M. J. Splicing therapy for neuromuscular disease. Mol. Cell. Neurosci. 56, 169–185 (2013).
pubmed: 23631896
pmcid: 3793868
Gubitz, A. K., Feng, W. & Dreyfuss, G. The SMN complex. Exp. Cell Res. 296, 51–56 (2004).
pubmed: 15120993
Khalil, M. et al. Serum neurofilament light levels in normal aging and their association with morphologic brain changes. Nat. Commun. 11, 812 (2020).
pubmed: 32041951
pmcid: 7010701
Reinert, M. C. et al. Serum neurofilament light chain is a useful biomarker in pediatric multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. https://doi.org/10.1212/NXI.0000000000000749 (2020).
doi: 10.1212/NXI.0000000000000749
pubmed: 32404429
pmcid: 7238898
Wurster, C. D. et al. Neurofilament light chain in serum of adolescent and adult SMA patients under treatment with nusinersen. J. Neurol. 267, 36–44 (2020).
pubmed: 31552549
Chen, I. An antisense oligonucleotide splicing modulator to treat spinal muscular atrophy. Nature Portfolio Milestones http://www.nature.com/articles/d42859-019-00090-4 (2019).
Sivaramakrishnan, M. et al. Binding to SMN2 pre-mRNA-protein complex elicits specificity for small molecule splicing modifiers. Nat. Commun. 8, 1476 (2017).
pubmed: 29133793
pmcid: 5684323
Tretiakova, A. P. et al. Realizing the promise of gene therapy through collaboration and partnering: Pfizer’s view. Nature Portfolio Sponsor Feature http://www.nature.com/articles/d42473-018-00307-6 (2021).
Li, C. & Samulski, R. J. Engineering adeno-associated virus vectors for gene therapy. Nat. Rev. Genet. 21, 255–272 (2020).
pubmed: 32042148
Schorling, D. C., Pechmann, A. & Kirschner, J. Advances in treatment of spinal muscular atrophy – new phenotypes, new challenges, new implications for care. J. Neuromuscul. Dis. 7, 1–13 (2020).
pubmed: 31707373
pmcid: 7029319
Montes, J. et al. Nusinersen improves walking distance and reduces fatigue in later-onset spinal muscular atrophy. Muscle Nerve 60, 409–414 (2019).
pubmed: 31298747
pmcid: 6771553