Accuracy and trending ability of finger plethysmographic cardiac output monitoring in late pregnancy.
Précision et capacité au suivi de tendance du monitorage pléthysmographique au doigt du débit cardiaque en fin de grossesse.
cardiac output
echocardiography
monitoring
non-invasive
pregnancy
Journal
Canadian journal of anaesthesia = Journal canadien d'anesthesie
ISSN: 1496-8975
Titre abrégé: Can J Anaesth
Pays: United States
ID NLM: 8701709
Informations de publication
Date de publication:
11 2022
11 2022
Historique:
received:
04
11
2021
accepted:
19
05
2022
revised:
22
03
2022
pubmed:
5
8
2022
medline:
26
10
2022
entrez:
4
8
2022
Statut:
ppublish
Résumé
Individuals in late pregnancy are at risk of significant hemodynamic variations, especially during Cesarean delivery. Although non-invasive monitoring might enable the early detection of variations in cardiac output (CO), clinical validation is lacking. In a prospective, single-center study, we measured CO simultaneously with finger plethysmography and transthoracic echocardiography in 100 third-trimester pregnant individuals in the supine and left lateral decubitus (LLD) positions. A Bland-Altman analysis revealed a mean (standard deviation) bias of 1.36 (1.04) L·min Our study showed a poor reliability of finger plethysmography for static measurement of CO. Nevertheless, finger plethysmography had a reasonably high concordance rate for the detection of CO changes secondary to positional changes in late-pregnant individuals. STUDY REGISTRATION DATE: www. gov (NCT03735043); registered 8 November 2018. RéSUMé: OBJECTIF: Les personnes en fin de grossesse sont à risque de variations hémodynamiques importantes, en particulier pendant un accouchement par césarienne. Bien que le monitorage non invasif puisse permettre la détection précoce des variations du débit cardiaque (DC), la validation clinique de ce type de monitorage fait défaut. MéTHODE: Dans une étude prospective monocentrique, nous avons mesuré le DC simultanément avec la pléthysmographie au doigt et l’échocardiographie transthoracique chez 100 femmes au troisième trimestre de leur grossesse en décubitus dorsal et en décubitus latéral gauche (DLG). RéSULTATS: Une analyse de Bland-Altman a révélé un biais moyen (écart type) de 1,36 (1,04) L·min
Autres résumés
Type: Publisher
(fre)
RéSUMé: OBJECTIF: Les personnes en fin de grossesse sont à risque de variations hémodynamiques importantes, en particulier pendant un accouchement par césarienne. Bien que le monitorage non invasif puisse permettre la détection précoce des variations du débit cardiaque (DC), la validation clinique de ce type de monitorage fait défaut. MéTHODE: Dans une étude prospective monocentrique, nous avons mesuré le DC simultanément avec la pléthysmographie au doigt et l’échocardiographie transthoracique chez 100 femmes au troisième trimestre de leur grossesse en décubitus dorsal et en décubitus latéral gauche (DLG). RéSULTATS: Une analyse de Bland-Altman a révélé un biais moyen (écart type) de 1,36 (1,04) L·min
Identifiants
pubmed: 35927539
doi: 10.1007/s12630-022-02297-y
pii: 10.1007/s12630-022-02297-y
doi:
Banques de données
ClinicalTrials.gov
['NCT03735043']
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1340-1348Informations de copyright
© 2022. Canadian Anesthesiologists' Society.
Références
Lee AJ, Landau R. Aortocaval compression syndrome: time to revisit certain dogmas. Anesth Analg 2017; 125: 1975–85. https://doi.org/10.1213/ANE.0000000000002313
doi: 10.1213/ANE.0000000000002313
pubmed: 28759487
Constans B, Langlois S, Vallet B. Influence du terme et de la position sur l’hémodynamique maternelle. intérêt des mesures non invasives. Ann Fr Anesth Réanimation 2014; 33: A321–2. https://doi.org/10.1016/j.annfar.2014.07.542
doi: 10.1016/j.annfar.2014.07.542
Rout CC, Rocke DA, Levin J, Gouws E, Reddy D. A reevaluation of the role of crystalloid preload in the prevention of hypotension associated with spinal anesthesia for elective cesarean section. Anesthesiology 1993; 79: 262–9. https://doi.org/10.1097/00000542-199308000-00011
doi: 10.1097/00000542-199308000-00011
pubmed: 8192733
Mercier FJ, Diemunsch P, Ducloy-Bouthors AS, et al. 6% Hydroxyethyl starch (130/0.4) vs Ringer’s lactate preloading before spinal anaesthesia for Caesarean delivery: the randomized, double-blind, multicentre CAESAR trial. Br J Anaesth 2014; 113: 459–67. https://doi.org/10.1093/bja/aeu103
doi: 10.1093/bja/aeu103
pubmed: 24970272
Cyna AM, Andrew M, Emmett RS, Middleton P, Simmons SW. Techniques for preventing hypotension during spinal anaesthesia for caesarean section. Cochrane Database Syst Rev 2006; 18: CD002251. https://doi.org/10.1002/14651858.CD002251.pub2
doi: 10.1002/14651858.CD002251.pub2
Ebner H, Barcohana J, Bartoshuk AK. Influence of postspinal hypotension on the fetal electrocardiogram. Am J Obstet Gynecol 1960; 80: 569–72. https://doi.org/10.1016/s0002-9378(16)36516-4
doi: 10.1016/s0002-9378(16)36516-4
pubmed: 13819175
Corke BC, Datta S, Ostheimer GW, Weiss JB, Alper MH. Spinal anaesthesia for Caesarean section. The influence of hypotension on neonatal outcome. Anaesthesia 1982; 37: 658–62. https://doi.org/10.1111/j.1365-2044.1982.tb01278.x
doi: 10.1111/j.1365-2044.1982.tb01278.x
pubmed: 7091625
Muñoz M, Stensballe J, Ducloy-Bouthors AS, et al. Patient blood management in obstetrics: prevention and treatment of postpartum haemorrhage. A NATA consensus statement. Blood Transfus 2019; 17: 112–36. https://doi.org/10.2450/2019.0245-18
doi: 10.2450/2019.0245-18
pubmed: 30865585
Le Manach Y, Hofer CK, Lehot JJ, et al. Can changes in arterial pressure be used to detect changes in cardiac output during volume expansion in the perioperative period? Anesthesiology 2012; 117: 1165–74. https://doi.org/10.1097/ALN.0b013e318275561d
doi: 10.1097/ALN.0b013e318275561d
pubmed: 23135262
Tsiaras S, Poppas A. Cardiac disease in pregnancy: value of echocardiography. Curr Cardiol Rep 2010; 12: 250–6. https://doi.org/10.1007/s11886-010-0106-9
doi: 10.1007/s11886-010-0106-9
pubmed: 20424969
Cornette J, Laker S, Jeffery B, et al. Validation of maternal cardiac output assessed by transthoracic echocardiography against pulmonary artery catheterization in severely ill pregnant women: prospective comparative study and systematic review. Ultrasound Obstet Gynecol 2017; 49: 25–31. https://doi.org/10.1002/uog.16015
doi: 10.1002/uog.16015
pubmed: 27404397
Bijl RC, Valensise H, Novelli GP, et al. Methods and considerations concerning cardiac output measurement in pregnant women: recommendations of the International Working Group on Maternal Hemodynamics. Ultrasound Obstet Gynecol 2019; 54: 35–50. https://doi.org/10.1002/uog.20231
doi: 10.1002/uog.20231
pubmed: 30737852
Lee W, Rokey R, Cotton DB. Noninvasive maternal stroke volume and cardiac output determinations by pulsed Doppler echocardiography. Am J Obstet Gynecol 1988; 158: 505–10. https://doi.org/10.1016/0002-9378(88)90014-2
doi: 10.1016/0002-9378(88)90014-2
pubmed: 3348311
Belfort MA, Rokey R, Saade GR, Moise KJ JR. Rapid echocardiographic assessment of left and right heart hemodynamics in critically ill obstetric patients. Am J Obstet Gynecol 1994; 171: 884–92. https://doi.org/10.1016/s0002-9378(94)70055-9
doi: 10.1016/s0002-9378(94)70055-9
pubmed: 7943098
van der Spoel AGE, Voogel AJ, Folkers A, Boer C, Bouwman RA. Comparison of noninvasive continuous arterial waveform analysis (Nexfin) with transthoracic Doppler echocardiography for monitoring of cardiac output. J Clin Anesth 2012; 24: 304–9. https://doi.org/10.1016/j.jclinane.2011.09.008
doi: 10.1016/j.jclinane.2011.09.008
pubmed: 22608585
Duclos G, Hili A, Resseguier N, et al. Clearsight
doi: 10.1016/j.ijoa.2018.04.009
pubmed: 30392653
Omenås IN, Tronstad C, Rosseland LA. Accuracy and trending abilities of finger plethysmographic blood pressure and cardiac output compared to invasive measurements during caesarean delivery in healthy women: an observational study. BMC Anesthesiol 2020; 20: 157. https://doi.org/10.1186/s12871-020-01078-8
doi: 10.1186/s12871-020-01078-8
pubmed: 32593297
pmcid: 7320595
Critchley LA, Critchley JA. A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput 1999; 15: 85–91. https://doi.org/10.1023/a:1009982611386
doi: 10.1023/a:1009982611386
pubmed: 12578081
Critchley LA, Lee A, Ho AM. A critical review of the ability of continuous cardiac output monitors to measure trends in cardiac output. Anesth Analg 2010; 111: 1180–92. https://doi.org/10.1213/ANE.0b013e3181f08a5b
doi: 10.1213/ANE.0b013e3181f08a5b
pubmed: 20736431
Doherty A, El-Khuffash A, Monteith C, et al. Comparison of bioreactance and echocardiographic non-invasive cardiac output monitoring and myocardial function assessment in primagravida women. Br J Anaesth 2017; 118: 527–32. https://doi.org/10.1093/bja/aex045
doi: 10.1093/bja/aex045
pubmed: 28403411
Ling HZ, Gallardo-Arozena M, Company-Calabuig AM, Nicolaides KH, Kametas NA. Clinical validation of bioreactance for the measurement of cardiac output in pregnancy. Anaesthesia 2020; 75: 1307–13. https://doi.org/10.1111/anae.15110
doi: 10.1111/anae.15110
pubmed: 32469423
McLaughlin K, Wright SP, Kingdom JCP, Parker JD. Clinical validation of non-invasive cardiac output monitoring in healthy pregnant women. J Obstet Gynaecol Can 2017; 39: 1008–14. https://doi.org/10.1016/j.jogc.2017.02.015
doi: 10.1016/j.jogc.2017.02.015
pubmed: 28733057
Melchiorre K, Sharma R, Khalil A, Thilaganathan B. Maternal cardiovascular function in normal pregnancy: evidence of maladaptation to chronic volume overload. Hypertens 2016; 67: 754–62. https://doi.org/10.1161/HYPERTENSIONAHA.115.06667
doi: 10.1161/HYPERTENSIONAHA.115.06667
Schraverus P, Kuijpers MM, Coumou J, Boly CA, Boer C, van Kralingen S. Level of agreement between cardiac output measurements using Nexfin® and thermodilution in morbidly obese patients undergoing laparoscopic surgery. Anaesthesia 2016; 71: 1449–55. https://doi.org/10.1111/anae.13627
doi: 10.1111/anae.13627
pubmed: 27667644
Boly CA, Schraverus P, van Raalten F, Coumou JW, Boer C, van Kralingen S. Pulse-contour derived cardiac output measurements in morbid obesity: influence of actual, ideal and adjusted bodyweight. J Clin Monit Comput 2018; 32: 423–8. https://doi.org/10.1007/s10877-017-0053-8
doi: 10.1007/s10877-017-0053-8
pubmed: 28822023
Jozwiak M, Mercado P, Teboul JL, et al. What is the lowest change in cardiac output that transthoracic echocardiography can detect? Crit Care 2019; 23: 116. https://doi.org/10.1186/s13054-019-2413-x
doi: 10.1186/s13054-019-2413-x
pubmed: 30971307
pmcid: 6458708
Kager CCM, Dekker GA, Stam MC. Measurement of cardiac output in normal pregnancy by a non-invasive two-dimensional independent Doppler device. Aust N Z J Obstet Gynaecol 2009; 49: 142–4. https://doi.org/10.1111/j.1479-828x.2009.00948.x
doi: 10.1111/j.1479-828x.2009.00948.x
pubmed: 19441163
Meah VL, Cockcroft JR, Backx K, Shave R, Stöhr EJ. Cardiac output and related haemodynamics during pregnancy: a series of meta-analyses. Heart 2016; 102: 518–26. https://doi.org/10.1136/heartjnl-2015-308476
doi: 10.1136/heartjnl-2015-308476
pubmed: 26794234