The effect of polystyrene microplastic and biosolid application on the toxicity and bioaccumulation of cadmium for Enchytraeus crypticus.
Bioaccumulation
Biosolid
Cadmium
E. crypticus
Polystyrene microplastic
Journal
Integrated environmental assessment and management
ISSN: 1551-3793
Titre abrégé: Integr Environ Assess Manag
Pays: United States
ID NLM: 101234521
Informations de publication
Date de publication:
Mar 2023
Mar 2023
Historique:
revised:
02
08
2022
received:
14
04
2022
accepted:
03
08
2022
pubmed:
7
8
2022
medline:
3
3
2023
entrez:
6
8
2022
Statut:
ppublish
Résumé
Plastics smaller than 5 mm that end up in a soil environment are known as microplastics (MPs). Microplastics have become a common contaminant in agricultural areas in addition to metals. However, the effect of cadmium (Cd) on soil organisms has not been clearly defined in the presence of MPs. In addition to MPs, biosolid application as a soil amendment in agricultural lands is also leading to shifts in soil conditions, such as the concentrations of nutrients and organic matter. Therefore, the aim of this study is to investigate the toxicity and bioaccumulation of Cd for Enchytraeus crypticus in the presence of polystyrene (PS)-MPs and biosolids to provide insight into their possible interactions. The lethal toxic concentration (LC50) for Cd was higher than 650 mg Cd/kg dry soil for all conditions. The presence of PS-MPs increased the toxicity of Cd for which EC50 was 102 and 38 mg Cd/kg dry soil without and with Cd, respectively, which may be the result of an increased exposure rate through adsorption of Cd on PS-MPs. On the contrary, the presence of biosolids decreased the toxicity of Cd where EC50 was 193 and 473 mg Cd/kg dry soil for the sets applied with 0.6 and 0.9 g biosolids, respectively. Coexistence of biosolids and PS-MPs decreased the reproduction toxicity of Cd, which is similar to the biosolid effect (EC50 is 305 mg Cd/kg dry soil). Bioaccumulation of Cd only positively correlated with its initial concentration in soil and was not affected by the presence of PS-MPs or biosolids. Integr Environ Assess Manag 2023;19:489-500. © 2022 SETAC.
Substances chimiques
Microplastics
0
Cadmium
00BH33GNGH
Plastics
0
Polystyrenes
0
Biosolids
0
Soil
0
Soil Pollutants
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
489-500Subventions
Organisme : TUBITAK
ID : 2209 A
Informations de copyright
© 2022 SETAC.
Références
Ahmad, M., Li, J. L., Wang, P. D., Hozzein, W. N., & Li, W. J. (2020). Environmental perspectives of microplastic pollution in the aquatic environment: A review. Marine Life Science and Technology, 2(4), 414-430.
Allen, H. E., & Janssen, C. R. (2006). Incorporating bioavailability into criteria for metals. In I. Twardowska, H. E. Allen, & M. A. Häggblom (Eds.), Soil and water pollution monitoring, protection and remediation (pp. 69-105). Springer.
Allouzi, M., Tang, D., Chew, K. W., Rinklebe, J., Bolan, N., Allouzi, S., & Show, P. L. (2021). Micro (nano) plastic pollution: The ecological influence on soil-plant system and human health. Science of the Total Environment, 788, 147815.
Ardestani, M. M. (2020). Comparison among test substrates in metal uptake and toxicity to Folsomia candida and Hordeum vulgare. Bulletin of Environmental Contamination and Toxicology, 104(4), 400-410.
Ardestani, M. M., & van Gestel, C. A. M. (2016). Sorption and pH determine the long-term partitioning of cadmium in natural soils. Environmental Science and Pollution Research, 23(18), 18492-18501.
Barus, B. S., Chen, K., Cai, M., Li, R., Chen, H., Li, C., Wang, J., & Cheng, S. Y. (2021). Heavy metal adsorption and release on polystyrene particles at various salinities. Frontiers in Marine Science, 8(June), 1-14.
Bhagat, J., Zang, L., Nishimura, N., & Shimada, Y. (2020). Zebrafish: An emerging model to study microplastic and nanoplastic toxicity. Science of the Total Environment, 728, 138707.
De Bhowmick, G., & Sarmah, A. K. (2022). Microplastics contamination associated with land-application of biosolids: A perspective. Current Opinion in Environmental Science and Health, 26, 100342.
Birke, M., Reimann, C., Rauch, U., Ladenberger, A., Demetriades, A., Jähne-Klingberg, F., Oorts, K., Gosar, M., Dinelli, E., & Halamić, J. (2017). GEMAS: Cadmium distribution and its sources in agricultural and grazing land soil of Europe-Original data versus Clr-transformed data. Journal of Geochemical Exploration, 173, 13-30.
Biswas, B., Qi, F., Biswas, J., Wijayawardena, A., Khan, M., & Naidu, R. (2018). The fate of chemical pollutants with soil properties and processes in the climate change paradigm-A review. Soil Systems, 2(3), 1-20.
Büyükkiliç Yanardağ, A., Mermut, A. R., Cano, Á. F., Garces, D. M. C., & Yanardağ, İ. H. (2016). Cadmium contents of soils and durum and bread wheats on Harran Plain, southeast Turkey. Turkish Journal of Agriculture and Forestry, 40(5), 772-782.
Caetano, A. L., Marques, C. R., Gavina, A., Gonçalves, F., da Silva, E. F., & Pereira, R. (2015). Contribution for the derivation of a soil screening level (SSV) for cadmium using a natural reference soil. Journal of Soils and Sediments, 16(1), 134-149.
Castro-Ferreira, M. P., Roelofs D., van Gestel C. A. M., Verweij R. A., Soares A. M. V. M., & Amorim M. J. B. (2012). Enchytraeus crypticus as model species in soil ecotoxicology. Chemosphere, 87(11), 1222-1227.
Chen, W.-Y., Li, W.-H., Ju, Y.-R., Liao, C.-M., & Liao, V. H.-C. (2017). Life cycle toxicity assessment of earthworms exposed to cadmium-contaminated soils. Ecotoxicology, 26(3), 360-369.
Dai, W., Ke, X., Li, Z., Gao, M., Wu, L., Chiristie, P., & Luo, Y. (2018). Antioxidant enzyme activities of Folsomia candida and avoidance of soil metal contamination. Environmental Science and Pollution Research, 25(3), 2889-2898.
De-la-Torre, G. E., Dioses-Salinas, D. C., Castro, J. M., Antay, R., Fernández, N. Y., Espinoza-Morriberón, D., & Saldaña-Serrano, M. (2020). Abundance and distribution of microplastics on sandy beaches of Lima, Peru. Marine Pollution Bulletin, 151, 110877.
Demise, N. (2006). OECD principles of corporate governance. In N. Demise, Y. Miwa, M. Nakabayashi, & Y. Nakoshi (Eds.), Corporate governance in Japan: From the viewpoints of management accounting, and the market (pp. 109-117). Springer.
Dissanayake, P. D., Kim, S., Sarkar, B., Oleszczuk, P., Sang, M. K., Haque, M. N., Ahn, J. H., Bank, M. S., & Ok, Y. S. (2022). Effects of microplastics on the terrestrial environment: A critical review. Environmental Research, 209, 112734.
Enya, O., Heaney, N., Iniama, G., & Lin, C. (2020). Effects of heavy metals on organic matter decomposition in inundated soils: Microcosm experiment and field examination. Science of the Total Environment, 724, 138223.
Frehland, S., Kaegi, R., Hufenus, R., & Mitrano, D. M. (2020). Long-term assessment of nanoplastic particle and microplastic fiber flux through a pilot wastewater treatment plant using metal-doped plastics. Water Research, 182, 115860.
Frias, J. P. G. L., & Nash, R. (2019). Microplastics: Finding a consensus on the definition. Marine Pollution Bulletin, 138, 145-147.
Fuller, S., & Gautam, A. (2016). A procedure for measuring microplastics using pressurized fluid extraction. Environmental Science and Technology, 50(11), 5774-5780.
Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), 25-29.
Giannakis, I., Emmanouil C., Mitrakas M., Manakou V., & Kungolos A. (2021). Chemical and ecotoxicological assessment of sludge-based biosolids used for corn field fertilization. Environmental Science and Pollution Research International, 28, 3797-3809.
Gomes, S., Gonçalves, M., Bicho, R. C., Roca, C. P., Soares, A., Scott-Fordsmand, J. J., & Amorim, M. (2018). High-throughput gene expression in soil invertebrate embryos-Mechanisms of Cd toxicity in Enchytraeus crypticus. Chemosphere, 212, 87-94.
González-Alcaraz, M. N., & van Gestel, C. A. M. (2015). Climate change effects on enchytraeid performance in metal-polluted soils explained from changes in metal bioavailability and bioaccumulation. Environmental Research, 142, 177-184.
Harley-Nyang, D., Memon, F. A., Jones, N., & Galloway, T. (2022). Investigation and analysis of microplastics in sewage sludge and biosolids: A case study from one wastewater treatment works in the UK. Science of the Total Environment, 823, 153735.
He, S., Jia, M., Xiang, Y., Song, B., Xiong, W., Cao, J., Peng, H., Yang, Y., Wang, W., Yang, Z., & Zeng, G. (2022). Biofilm on microplastics in aqueous environment: Physicochemical properties and environmental implications. Journal of Hazardous Materials, 424(PB), 127286.
Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salánki, T., van der Ploeg, M., Besseling, E., Koelmans, A. A., & Geissen, V. (2016). Microplastics in the Terrestrial Ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environmental Science & Technology, 50(5), 2685-2691.
Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salánki, T., van der Ploeg, M., Besseling, E., Koelmans, A. A., & Geissen, V. (2017). Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environmental Pollution, 220, 523-531.
ISO. (2004). Soil quality - effects of pollutants on Enchytraeidae (Enchytraeus sp.) - determination of effects on reproduction and survival. ISO (International Organization for Standardization).
Kaur, P., Singh, K., & Singh, B. (2022). Microplastics in soil: Impacts and microbial diversity and degradation. Pedosphere, 32(1), 49-60.
Khalid, N., Aqeel, M., Noman, A., Khan, S. M., & Akhter, N. (2021). Interactions and effects of microplastics with heavy metals in aquatic and terrestrial environments. Environmental Pollution, 290, 118104.
Koleli, N., & Halisdemir, B. (2005). Distribution of chromium, cadmium, nickel and lead in agricultural soils collected from Kazanli-Mersin, Turkey. International Journal of Environment and Pollution, 23, 409-416.
Koutnik, V. S., Alkidim, S., Leonard, J., DePrima, F., Cao, S., Hoek, E. M. V., & Mohanty, S. K. (2021). Unaccounted microplastics in wastewater sludge: Where do they go? ACS ES&T Water, 1(5), 1086-1097.
Krishnamurti, G. S. R., Megharaj, M., & Naidu, R. (2004). Bioavailability of cadmium-organic complexes to soil alga-An exception to the free ion model. Journal of Agricultural and Food Chemistry, 52(12), 3894-3899.
Lahive, E., Walton, A., Horton, A. A., Spurgeon, D. J., & Svendsen, C. (2019a). Microplastic particles reduce reproduction in the terrestrial worm Enchytraeus crypticus in a soil exposure. Environmental Pollution, 255, 113174.
Lemtiri, A., Colinet, G., Alabi, T., Bodson, B., Olivier, C., Brostaux, Y., Pierreux, J., Haubruge, E., Cluzeau, D., & Francis, F. (2018). Short-term effects of tillage practices and crop residue exportation on soil organic matter and earthworm communities in silt loam arable soil. In M. A. Muñoz & R. Zornoza (Eds.), Soil management and climate change: Effects on organic carbon, nitrogen dynamics, and greenhouse gas emissions (pp. 53-73). Elsevier Inc.
Li, L., Li, Z., Liu, D., & Song, K. (2020). Evaluation of partial nitrification efficiency as a response to cadmium concentration and microplastic polyvinylchloride abundance during landfill leachate treatment. Chemosphere, 247, 1-9.
Li, M., Wu, D., Wu, D., Guo, H., & Han, S. (2021). Influence of polyethylene-microplastic on environmental behaviors of metals in soil. Environmental Science and Pollution Research International, 28, 28329-28336.
Li, S., Jia, M., Li, Z., Ke, X., Wu, L., & Christie, P. (2021). Ecotoxicity of arsenic contamination toward the soil enchytraeid Enchytraeus crypticus at different biological levels: Laboratory studies. Ecotoxicology and Environmental Safety, 207, 111218.
Li, W., Zu, B., Yang, Q., Huang, Y., & Li, J. (2022). Adsorption of lead and cadmium by microplastics and their desorption behavior as vectors in the gastrointestinal environment. Journal of Environmental Chemical Engineering, 10(3), 107379.
Liu, F., Zhu, P., Sheng, W., & Xue, J. (2013). Sludge earthworm composting technology by Eisenia fetida. Journal of Material Cycles and Waste Management, 15(4), 482-488.
Lv, W., Yuan, Q., He, D., Lv, W., & Zhou, W. (2020). Microplastic contamination caused by different rearing modes of Asian swamp eel (Monopterus albus). Aquaculture Research, 51(12), 5084-5095.
Ma, H., Pu, S., Liu, S., Bai, Y., Mandal, S., & Xing, B. (2020). Microplastics in aquatic environments: Toxicity to trigger ecological consequences. Environmental Pollution, 261, 114089.
Maaß, S., Daphi, D., Lehmann, A., & Rillig, M. C. (2017). Transport of microplastics by two collembolan species. Environmental Pollution, 225, 456-459.
Mahar, A., Ping, W., Ronghua, L. I., & Zengqiang, Z. (2015). Immobilization of lead and cadmium in contaminated soil using amendments: A review. Pedosphere: An International Journal, 25(4), 555-568.
Mhalla, B., Ahmed, N., Datta, S. P., Golui, D., Singh, M., & Shrivastava, M. (2021). Solubility relationship of metals in acid soils of Kumaon Himalaya Region of India. Communications in Soil Science and Plant Analysis, 52(19), 2373-2387.
Mohajerani, A., & Karabatak, B. (2020). Microplastics and pollutants in biosolids have contaminated agricultural soils: An analytical study and a proposal to cease the use of biosolids in farmlands and utilise them in sustainable bricks. Waste Management, 107, 252-265.
Mujtaba Munir, M. A., Yousaf, B., Ali, M. U., Dan, C., Abbas, Q., Arif, M., & Yang, X. (2021). In situ synthesis of micro-plastics embedded sewage-sludge co-pyrolyzed biochar: Implications for the remediation of Cr and Pb availability and enzymatic activities from the contaminated soil. Journal of Cleaner Production, 302, 127005.
Natasha, Bibi, I., Niazi, N. K., Shahid, M., Ali, F., Masood ul Hasan, I., Rahman, M. M., Younas, F., Hussain, M. M., Mehmood, T., Shaheen, S. M., Naidu, R., & Rinklebe, J. (2022). Distribution and ecological risk assessment of trace elements in the paddy soil-rice ecosystem of Punjab, Pakistan. Environmental Pollution, 307, 119492.
Ng, E. L., Huerta Lwanga, E., Eldridge, S. M., Johnston, P., Hu, H. W., Geissen, V., & Chen, D. (2018). An overview of microplastic and nanoplastic pollution in agroecosystems. Science of the Total Environment, 627, 1377-1388.
Nizzetto, L., Bussi, G., Futter, M. N., Butterfield, D., & Whitehead, P. G. (2016). A theoretical assessment of microplastic transport in river catchments and their retention by soils and river sediments. Environmental Science: Processes and Impacts, 18(8), 1050-1059.
Padilha Mendonca, M. C. (2020). Protective effect of N-acetylcysteine on the toxicity of silver nanoparticles: Bioavailability and toxicokinetics in Enchytraeus crypticus. Science of the Total Environment, 715, 136797.
Pavel, V. L., Diaconu, M., Bulgariu, D., Statescu, F., & Gavrilescu, M. (2012). Evaluation of heavy metals toxicity on two microbial strains isolated from soil: Azotobacter sp. and Pichia sp. 11(1), 165-168.
Pflugmacher, S., Huttunen, J. H., Wolff, M. V., Penttinen, O. P., Kim, Y. J., Kim, S., Mitrovic, S. M., & Esterhuizen-Londt, M. (2020). Enchytraeus crypticus avoid soil spiked with microplastic. Toxics, 8(1), 1-10.
Pontoni, L., La Vecchia, C., Boguta, P., Sirakov, M., D'Aniello, E., Fabbricino, M., & Locascio, A. (2022). Natural organic matter controls metal speciation and toxicity for marine organisms: A review. Environmental Chemistry Letters, 20(1), 797-812.
Prokop, Z., Cupr, P., Zlevorova-Zlamalikova, V., Komarek, J., Dusek, L., & Holoubek, I. (2003). Mobility, bioavailability, and toxic effects of cadmium in soil samples. Environmental Research, 91(2), 119-126.
Qi, H., Zhao B., Li L., Chen X., An J., & Liu X. (2020). Heavy metal contamination and ecological risk assessment of the agricultural soil in Shanxi Province, China: Heavy metals in soil in Shanxi of China. Royal Society Open Science, 7(10), 200538.
Qiao, R., Deng, Y., Zhang, S., Wolosker, M. B., Zhu, Q., Ren, H., & Zhang, Y. (2019). Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish. Chemosphere, 236, 124334.
Raiesi, F., & Dayani, L. (2021). Compost application increases the ecological dose values in a non-calcareous agricultural soil contaminated with cadmium. Ecotoxicology, 30(1), 17-30.
Renaud, M., Cousins, M., Awuah, K. F., Jegede, O., Sousa, J. P., & Siciliano, S. D. (2020). The effects of complex metal oxide mixtures on three soil invertebrates with contrasting biological traits. Science of the Total Environment, 738, 139921.
Rillig, M. C., Ingraffia, R., & De Souza Machado, A. A. (2017). Microplastic incorporation into soil in agroecosystems. Frontiers in Plant Science, 8, 8-11.
Rillig, M. C., Leifheit, E., & Lehmann, J. (2021). Microplastic effects on carbon cycling processes in soils. PLoS Biology, 19(3), 3001130.
Rodriguez-Seijo, A., Lourenço, J., Rocha-Santos, T., da Costa, J., Duarte, A. C., Vala, H., & Pereira, R. (2017). Histopathological and molecular effects of microplastics in Eisenia andrei Bouché. Environmental Pollution, 220, 495-503.
Salam, L. B., Obayori, O. S., Ilori, M. O., & Amund, O. O. (2020). Effects of cadmium perturbation on the microbial community structure and heavy metal resistome of a tropical agricultural soil. Bioresources and Bioprocessing, 7(1), 25.
Santorufo, L., Van Gestel, C. A. M., & Maisto, G. (2012). Ecotoxicological assessment of metal-polluted urban soils using bioassays with three soil invertebrates. Chemosphere, 88(4), 418-425.
Santos, F. C. F., van Gestel, C. A. M., & Amorim, M. J. B. (2021). Toxicokinetics of copper and cadmium in the soil model Enchytraeus crypticus (Oligochaeta). Chemosphere, 270, 129433.
Santos, F. C. F., Verweij, R. A., van Gestel, C. A. M., & Amorim, M. J. B. (2022). Toxicokinetics of chromium in Enchytraeus crypticus (Oligochaeta). Toxics, 10(2), 82.
Ben Seghier, T., & Bouhadjera, K. (2020). Pollution assessment of heavy metals in roadside agricultural soils. Polish Journal of Environmental Studies, 29(4), 2855-2863.
Sobhani, Z., Panneerselvan, L., Fang, C., Naidu, R., & Megharaj, M. (2021). Chronic and transgenerational effects of polystyrene microplastics at environmentally relevant concentrations in earthworms (Eisenia fetida). Environmental Toxicology and Chemistry, 40(8), 2240-2246.
Sotomayor-Ramírez, D., Espinoza, Y., & Acosta-Martínez, V. (2009). Land use effects on microbial biomass C, β-glucosidase and β-glucosaminidase activities, and availability, storage, and age of organic C in soil. Biology and Fertility of Soils, 45(5), 487-497.
Sydow, M., Chrzanowski, Ł., Cedergreen, N., & Owsianiak, M. (2017). Limitations of experiments performed in artificially made OECD standard soils for predicting cadmium, lead and zinc toxicity towards organisms living in natural soils. Journal of Environmental Management, 198, 32-40.
Topuz, E., & van Gestel, C. A. M. (2017). The effect of soil properties on the toxicity and bioaccumulation of Ag nanoparticles and Ag ions in Enchytraeus crypticus. Ecotoxicology and Environmental Safety, 144, 330-337.
Tourinho, P. S., Loureiro, S., Talluri, V., Dolar, A., Verweij, R., Chvojka, J., Michalcová, A., Kočí, V., & van Gestel, C. (2021). Microplastic fibers influence Ag toxicity and bioaccumulation in Eisenia andrei but not in Enchytraeus crypticus. Ecotoxicology, 30(6), 1216-1226.
van den Berg, P., Huerta-Lwanga, E., Corradini, F., & Geissen, V. (2020). Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils. Environmental Pollution, 261, 114198.
Velicogna, J. R., Schwertfeger, D., Jesmer, A., Beer, C., Kuo, J., DeRosa, M. C., Scroggins, R., Smith, M., & Princz, J. (2021). Soil invertebrate toxicity and bioaccumulation of nano copper oxide and copper sulphate in soils, with and without biosolids amendment. Ecotoxicology and Environmental Safety, 217, 112222.
Voua Otomo, P., Reinecke, S. A., & Reinecke, A. J. (2013). Combined effects of metal contamination and temperature on the potworm Enchytraeus doerjesi (Oligochaeta). Journal of Applied Toxicology, 33(12), 1520-1524.
Wang, G., & Zhou, L. (2017). Application of green manure and pig manure to Cd-contaminated paddy soil increases the risk of Cd uptake by rice and Cd downward migration into groundwater: Field micro-plot trials. Water, Air, & Soil Pollution, 228, 155.
Wang, J., Coffin, S., Sun, C., Schlenk, D., & Gan, J. (2019). Negligible effects of microplastics on animal fitness and HOC bioaccumulation in earthworm Eisenia fetida in soil. Environmental Pollution, 249, 776-784.
Wen, B., Jin, S. R., Chen, Z. Z., Gao, J. Z., Liu, Y. N., Liu, J. H., & Feng, X. S. (2018). Single and combined effects of microplastics and cadmium on the cadmium accumulation, antioxidant defence and innate immunity of the discus fish (Symphysodon aequifasciatus). Environmental Pollution, 243, 462-471.
Xu, B., Liu F., Cryder Z., Huang D., Lu Z., He Y., Wang H., Lu Z., Brookes P.C., Tang C., Gan J., & Xu J. (2020). Microplastics in the soil environment: Occurrence, risks, interactions and fate-A review. Critical Reviews in Environmental Science and Technology, 50(21), 2175-2222.
Yang, L., Zhang, Y., Kang, S., Wang, Z., & Wu, C. (2021). Microplastics in soil: A review on methods, occurrence, sources, and potential risk. Science of the Total Environment, 780, 146546.
Yang, X., Bento C. P. M., Chen H., Zhang H., Xue S., Lwanga E. H., Zomer P., Ritsema C. J., & Geissen V. (2018). Influence of microplastic addition on glyphosate decay and soil microbial activities in Chinese loess soil. Environmental Pollution, 242, 338-347.
Yu, H., Qi, W., Cao, X., Hu, J., Li, Y., Peng, J., Hu, C., & Qu, J. (2021). Microplastic residues in wetland ecosystems: Do they truly threaten the plant-microbe-soil system? Environment International, 156, 106708.
Zhang, L., Belloc da Silva Muccillo, V., & Van Gestel, C. A. M. (2019). A combined toxicokinetics and toxicodynamics approach to investigate delayed lead toxicity in the soil invertebrate Enchytraeus crypticus. Ecotoxicology and Environmental Safety, 169, 33-39.
Zhang, B., Yang, X., Chen, L., Chao, J., Teng, J., & Wang, Q. (2020). Microplastics in soils: A review of possible sources, analytical methods and ecological impacts. Journal of Chemical Technology and Biotechnology, 95(8), 2052-2068.
Zhang, S., Wang, J., Yan, P., Hao, X., Xu, B., Wang, W., & Aurangzeib, M. (2021). Non-biodegradable microplastics in soils: A brief review and challenge. Journal of Hazardous Materials, 409, 124525.
Zhao, M., Zeng, S., Liu, S., Li, Z., & Jing, L. (2020). Metal accumulation by plants growing in China: Capacity, synergy, and moderator effects. Ecological Engineering, 148, 105790.
Zhao, Y., Fang, X., Mu, Y., Cheng, Y., Ma, Q., Nian, H., & Yang, C. (2014). Metal pollution (Cd, Pb, Zn, and As) in agricultural soils and soybean, glycine max, in Southern China. Bulletin of Environmental Contamination and Toxicology, 92(4), 427-432.
Zhou, Y., Yang, Y., Liu, G., He, G., & Liu, W. (2020). Adsorption mechanism of cadmium on microplastics and their desorption behavior in sediment and gut environments: The roles of water pH, lead ions, natural organic matter and Phenanthrene. Water Research, 184, 116209.
Zhu, B. K., Fang, Y. M., Zhu, D., Christie, P., Ke, X., & Zhu, Y. G. (2018). Exposure to nanoplastics disturbs the gut microbiome in the soil Oligochaete Enchytraeus crypticus*. Environmental Pollution, 239, 408-415.
Zhuang, Z., Wang, Q., Huang, S., NiñoSavala, A. G., Wan, Y., Li, H., Schweiger, A. H., Fangmeier, A., & Franzaring, J. (2023). Source-specific risk assessment for cadmium in wheat and maize: Towards an enrichment model for China. Journal of Environmental Sciences, 125, 723-734.
Ziajahromi, S., Neale, P. A., Telles Silveira, I., Chua, A., & Leusch, F. (2021). An audit of microplastic abundance throughout three Australian wastewater treatment plants. Chemosphere, 263, 128294.