Quorum sensing-based interactions among drugs, microbes, and diseases.
drugs
gut microbiota
microbe-disease association
microbe-host interaction
personalized medicine
quorum sensing
Journal
Science China. Life sciences
ISSN: 1869-1889
Titre abrégé: Sci China Life Sci
Pays: China
ID NLM: 101529880
Informations de publication
Date de publication:
01 2023
01 2023
Historique:
received:
20
03
2022
accepted:
02
05
2022
pubmed:
7
8
2022
medline:
12
1
2023
entrez:
6
8
2022
Statut:
ppublish
Résumé
Many diseases and health conditions are closely related to various microbes, which participate in complex interactions with diverse drugs; nonetheless, the detailed targets of such drugs remain to be elucidated. Many existing studies have reported causal associations among drugs, gut microbes, or diseases, calling for a workflow to reveal their intricate interactions. In this study, we developed a systematic workflow comprising three modules to construct a Quorum Sensing-based Drug-Microbe-Disease (QS-DMD) database ( http://www.qsdmd.lbci.net/ ), which includes diverse interactions for more than 8,000 drugs, 163 microbes, and 42 common diseases. Potential interactions between microbes and more than 8,000 drugs have been systematically studied by targeting microbial QS receptors combined with a docking-based virtual screening technique and in vitro experimental validations. Furthermore, we have constructed a QS-based drug-receptor interaction network, proposed a systematic framework including various drug-receptor-microbe-disease connections, and mapped a paradigmatic circular interaction network based on the QS-DMD, which can provide the underlying QS-based mechanisms for the reported causal associations. The QS-DMD will promote an understanding of personalized medicine and the development of potential therapies for diverse diseases. This work contributes to a paradigm for the construction of a molecule-receptor-microbe-disease interaction network for human health that may form one of the key knowledge maps of precision medicine in the future.
Identifiants
pubmed: 35933489
doi: 10.1007/s11427-021-2121-0
pii: 10.1007/s11427-021-2121-0
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
137-151Informations de copyright
© 2022. Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Abbas, H.A., Elsherbini, A.M., and Shaldam, M.A. (2017). Repurposing metformin as a quorum sensing inhibitor in Pseudomonas aeruginosa. Afr H Sci 17, 808–819.
doi: 10.4314/ahs.v17i3.24
Aggeletopoulou, I., Konstantakis, C., Assimakopoulos, S.F., and Triantos, C. (2019). The role of the gut microbiota in the treatment of inflammatory bowel diseases. Microb Pathog 137, 103774.
doi: 10.1016/j.micpath.2019.103774
Almeida, F.A., Vargas, E.L.G., Carneiro, D.G., Pinto, U.M., and Vanetti, M. C.D. (2018). Virtual screening of plant compounds and nonsteroidal anti-inflammatory drugs for inhibition of quorum sensing and biofilm formation in Salmonella. Microb Pathog 121, 369–388.
doi: 10.1016/j.micpath.2018.05.014
Apweiler, R., Bairoch, A., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., et al. (2004). UniProt: the Universal Protein knowledgebase. Nucleic Acids Res 32, 115D–119.
doi: 10.1093/nar/gkh131
Bäckhed, F., Roswall, J., Peng, Y., Feng, Q., Jia, H., Kovatcheva-Datchary, P., Li, Y., Xia, Y., Xie, H., Zhong, H., et al. (2015). Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703.
doi: 10.1016/j.chom.2015.04.004
Barretto, S.A., Lasserre, F., Huillet, M., Régnier, M., Polizzi, A., Lippi, Y., Fougerat, A., Person, E., Bruel, S., Bétoulières, C., et al. (2021). The pregnane X receptor drives sexually dimorphic hepatic changes in lipid and xenobiotic metabolism in response to gut microbiota in mice. Microbiome 9, 93.
doi: 10.1186/s40168-021-01050-9
Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E. (2000). The Protein Data Bank. Nucleic Acids Res 28, 235–242.
doi: 10.1093/nar/28.1.235
Bocková, M., Slabý, J., Špringer, T., and Homola, J. (2019). Advances in surface plasmon resonance imaging and microscopy and their biological applications. Annu Rev Anal Chem 12, 151–176.
doi: 10.1146/annurev-anchem-061318-115106
Bottomley, M.J., Muraglia, E., Bazzo, R., and Carfì, A. (2007). Molecular insights into quorum sensing in the human pathogen Pseudomonas aeruginosa from the structure of the virulence regulator LasR bound to its autoinducer. J Biol Chem 282, 13592–13600.
doi: 10.1074/jbc.M700556200
Breuninger, T.A., Wawro, N., Breuninger, J., Reitmeier, S., Clavel, T., Six-Merker, J., Pestoni, G., Rohrmann, S., Rathmann, W., Peters, A., et al. (2021). Associations between habitual diet, metabolic disease, and the gut microbiota using latent Dirichlet allocation. Microbiome 9, 61.
doi: 10.1186/s40168-020-00969-9
Chassaing, B., Van de Wiele, T., De Bodt, J., Marzorati, M., and Gewirtz, A.T. (2017). Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut 66, 1414–1427.
doi: 10.1136/gutjnl-2016-313099
Chen, G., Swem, L.R., Swem, D.L., Stauff, D.L., O’Loughlin, C.T., Jeffrey, P.D., Bassler, B.L., and Hughson, F.M. (2011). A strategy for antagonizing quorum sensing. Mol Cell 42, 199–209.
doi: 10.1016/j.molcel.2011.04.003
Chen, X., Schauder, S., Potier, N., Van Dorsselaer, A., Pelczer, I., Bassler, B.L., and Hughson, F.M. (2002). Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415, 545–549.
doi: 10.1038/415545a
Cheng, L., Qi, C., Zhuang, H., Fu, T., and Zhang, X. (2020). gutMDisorder: a comprehensive database for dysbiosis of the gut microbiota in disorders and interventions. Nucleic Acids Res 48, D554–D560.
doi: 10.1093/nar/gkz843
Collison, M., Hirt, R.P., Wipat, A., Nakjang, S., Sanseau, P., and Brown, J. R. (2012). Data mining the human gut microbiota for therapeutic targets. Briefings BioInf 13, 751–768.
doi: 10.1093/bib/bbs002
Copeland, R.A. (2016). The drug-target residence time model: a 10-year retrospective. Nat Rev Drug Discov 15, 87–95.
doi: 10.1038/nrd.2015.18
Defoirdt, T. (2018). Quorum-sensing systems as targets for antivirulence therapy. Trends Microbiol 26, 313–328.
doi: 10.1016/j.tim.2017.10.005
Desai, M.S., Seekatz, A.M., Koropatkin, N.M., Kamada, N., Hickey, C.A., Wolter, M., Pudlo, N.A., Kitamoto, S., Terrapon, N., Muller, A., et al. (2016). A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353.e21.
doi: 10.1016/j.cell.2016.10.043
Devkota, S., Wang, Y., Musch, M.W., Leone, V., Fehlner-Peach, H., Nadimpalli, A., Antonopoulos, D.A., Jabri, B., and Chang, E.B. (2012). Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10
doi: 10.1038/nature11225
Dubey, B.N., Lori, C., Ozaki, S., Fucile, G., Plaza-Menacho, I., Jenal, U., and Schirmer, T. (2016). Cyclic di-GMP mediates a histidine kinase/phosphatase switch by noncovalent domain cross-linking. Sci Adv 2, e1600823.
doi: 10.1126/sciadv.1600823
Forslund, K., Hildebrand, F., Nielsen, T., Falony, G., Le Chatelier, E., Sunagawa, S., Prifti, E., Vieira-Silva, S., Gudmundsdottir, V., Krogh Pedersen, H., et al. (2015). Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266.
doi: 10.1038/nature15766
Frame, L.A., Costa, E., and Jackson, S.A. (2020). Current explorations of nutrition and the gut microbiome: a comprehensive evaluation of the review literature. Nutr Rev 78, 198–812.
doi: 10.1093/nutrit/nuz106
Gaulton, A., Hersey, A., Nowotka, M., Bento, A.P., Chambers, J., Mendez, D., Mutowo, P., Atkinson, F., Bellis, L.J., Cibrián-Uhalte, E., et al. (2011). The ChEMBL database in 2017. Nucleic Acids Res 45, D945–D954.
doi: 10.1093/nar/gkw1074
Hassan, R., Allali, I., Agamah, F.E., Elsheikh, S.S.M., Thomford, N.E., Dandara, C., and Chimusa, E.R. (2021). Drug response in association with pharmacogenomics and pharmacomicrobiomics: towards a better personalized medicine. Briefings BioInf 22, bbaa292.
doi: 10.1093/bib/bbaa292
Honda, K., and Littman, D.R. (2016). The microbiota in adaptive immune homeostasis and disease. Nature 535, 15–84.
doi: 10.1038/nature18848
Ilangovan, A., Fletcher, M., Rampioni, G., Pustelny, C., Rumbaugh, K., Heeb, S., Cámara, M., Truman, A., Chhabra, S.R., Emsley, J., et al. (2013). Structural basis for native agonist and synthetic inhibitor recognition by the Pseudomonas aeruginosa quorum sensing regulator PqsR (MvfR). PLoS Pathog 9, e1003508.
doi: 10.1371/journal.ppat.1003508
Imhann, F., Bonder, M.J., Vich Vila, A., Fu, J., Mujagic, Z., Vork, L., Tigchelaar, E.F., Jankipersadsing, S.A., Cenit, M.C., Harmsen, H.J.M., et al. (2016). Proton pump inhibitors affect the gut microbiome. Gut 65, 140–148.
doi: 10.1136/gutjnl-2015-310376
Irwin, J.J., and Shoichet, B.K. (2005). ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model 45, 111–182.
doi: 10.1021/ci049714+
Jackson, M.A., Goodrich, J.K., Maxan, M.E., Freedberg, D.E., Abrams, J. A., Poole, A.C., Sutter, J.L., Welter, D., Ley, R.E., Bell, J.T., et al. (2016). Proton pump inhibitors alter the composition of the gut microbiota. Gut 65, 149–156.
doi: 10.1136/gutjnl-2015-310861
Jackson, M.A., Verdi, S., Maxan, M.E., Shin, C.M., Zierer, J., Bowyer, R.C.E., Martin, T., Williams, F.M.K., Menni, C., Bell, J.T., et al. (2018). Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nat Commun 9, 2655.
doi: 10.1038/s41467-018-05184-7
Javdan, B., Lopez, J.G., Chankhamjon, P., Lee, Y.C.J., Hull, R., Wu, Q., Wang, X., Chatterjee, S., and Donia, M.S. (2020). Personalized mapping of drug metabolism by the human gut microbiome. Cell 181, 1661–1619.e22.
doi: 10.1016/j.cell.2020.05.001
Kim, S., Thiessen, P.A., Bolton, E.E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B.A., et al. (2016). PubChem Substance and Compound databases. Nucleic Acids Res 44, D1202–D1213.
doi: 10.1093/nar/gkv951
Kim, Y., Chhor, G., Tsai, C.S., Fox, G., Chen, C.S., Winans, N.J., Jedrzejczak, R., Joachimiak, A., and Winans, S.C. (2011). X-ray crystal structures of the pheromone-binding domains of two quorum-hindered transcription factors, YenR of Yersinia enterocolitica and CepR2 of Burkholderia cenocepacia. Proteins 85, 1831–1844.
doi: 10.1002/prot.25336
Klünemann, M., Andrejev, S., Blasche, S., Mateus, A., Phapale, P., Devendran, S., Vappiani, J., Simon, B., Scott, T.A., Kafkia, E., et al. (2021). Bioaccumulation of therapeutic drugs by human gut bacteria. Nature 597, 533–538.
doi: 10.1038/s41586-021-03891-8
Li, H., Gao, Z., Kang, L., Zhang, H., Yang, K., Yu, K., Luo, X., Zhu, W., Chen, K., Shen, J., et al. (2006). TarFisDock: a web server for identifying drug targets with docking approach. Nucleic Acids Res 34, W219–W224.
doi: 10.1093/nar/gkl114
Li, L., Ning, Z., Zhang, X., Mayne, J., Cheng, K., Stintzi, A., and Figeys, D. (2020). RapidAIM: a culture- and metaproteomics-based Rapid Assay of Individual Microbiome responses to drugs. Microbiome 8, 33.
doi: 10.1186/s40168-020-00806-z
Lintz, M.J., Oinuma, K.I., Wysoczynski, C.L., Greenberg, E.P., and Churchill, M.E.A. (2011). Crystal structure of QscR, a Pseudomonas aeruginosa quorum sensing signal receptor. Proc Natl Acad Sci USA 108, 15163–15168.
doi: 10.1073/pnas.1112398108
Liu, T., Lin, Y., Wen, X., Jorissen, R.N., and Gilson, M.K. (2001). BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 35, D198–D201.
doi: 10.1093/nar/gkl999
Luo, J., Zhang, R., Wang, X., Hou, Z., Guo, S., and Jiang, B. (2020). Binding properties of marine bromophenols with human protein tyrosine phosphatase 1B: molecular docking, surface plasmon resonance and cellular insulin resistance study. Int J Biol Macromolecules 163, 200–208.
doi: 10.1016/j.ijbiomac.2020.06.263
Maier, L., Pruteanu, M., Kuhn, M., Zeller, G., Telzerow, A., Anderson, E. E., Brochado, A.R., Fernandez, K.C., Dose, H., Mori, H., et al. (2018). Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623–628.
doi: 10.1038/nature25979
Maier, L., and Typas, A. (2011). Systematically investigating the impact of medication on the gut microbiome. Curr Opin Microbiol 39, 128–135.
doi: 10.1016/j.mib.2017.11.001
Miller, S.T., Xavier, K.B., Campagna, S.R., Taga, M.E., Semmelhack, M.F., Bassler, B.L., and Hughson, F.M. (2004). Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Mol Cell 15, 611–681.
doi: 10.1016/j.molcel.2004.07.020
Nguyen, Y., Nguyen, N.X., Rogers, J.L., Liao, J., MacMillan, J.B., Jiang, Y., and Sperandio, V. (2015). Structural and mechanistic roles of novel chemical ligands on the SdiA quorum-sensing transcription regulator. mBio 6, e02429–14.
doi: 10.1128/mBio.02429-14
Panebianco, C., Andriulli, A., and Pazienza, V. (2018). Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies. Microbiome 6, 92.
doi: 10.1186/s40168-018-0483-7
Patching, S.G. (2014). Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery. Biochim Biophys Acta (BBA)-Biomembranes 1838, 43–55.
doi: 10.1016/j.bbamem.2013.04.028
Qi, H., Niu, L., Zhang, J., Chen, J., Wang, S., Yang, J., Guo, S., Lawson, T., Shi, B., and Song, C. (2018). Large-area gold nanohole arrays fabricated by one-step method for surface plasmon resonance biochemical sensing. Sci China Life Sci 61, 416–482.
doi: 10.1007/s11427-017-9270-x
Rajamanikandan, S., Jeyakanthan, J., and Srinivasan, P. (2011). Binding mode exploration of LuxR-thiazolidinedione analogues, e-pharmacophore-based virtual screening in the designing of LuxR inhibitors and its biological evaluation. J Biomol Structure Dyn 35, 891–916.
Rajput, A., Kaur, K., and Kumar, M. (2016). SigMol: repertoire of quorum sensing signaling molecules in prokaryotes. Nucleic Acids Res 44, D634–D639.
doi: 10.1093/nar/gkv1076
Rajput, A., Thakur, A., Sharma, S., and Kumar, M. (2018). aBiofilm: a resource of anti-biofilm agents and their potential implications in targeting antibiotic drug resistance. Nucleic Acids Res 46, D894–D900.
doi: 10.1093/nar/gkx1157
Raju, S.C., Viljakainen, H., Figueiredo, R.A.O., Neuvonen, P.J., Eriksson, J.G., Weiderpass, E., and Rounge, T.B. (2020). Antimicrobial drug use in the first decade of life influences saliva microbiota diversity and composition. Microbiome 8, 121.
doi: 10.1186/s40168-020-00893-y
Rathinam, P., Vijay Kumar, H.S., and Viswanathan, P. (2011). Eugenol exhibits anti-virulence properties by competitively binding to quorum sensing receptors. Biofouling 33, 624–639.
doi: 10.1080/08927014.2017.1350655
Savage, N. (2020). The complex relationship between drugs and the microbiome. Nature 577, S10–S11.
doi: 10.1038/d41586-020-00196-0
Scarano, S., Mascini, M., Turner, A.P.F., and Minunni, M. (2010). Surface plasmon resonance imaging for affinity-based biosensors. Biosens Bioelectron 25, 951–966.
doi: 10.1016/j.bios.2009.08.039
Sherry, S.T., Ward, M.H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M., and Sirotkin, K. (2001). dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29, 308–311.
doi: 10.1093/nar/29.1.308
Singh, S., and Bhatia, S. (2018). In silico identification of albendazole as a quorum sensing inhibitor and its in vitro verification using CviR and LasB receptors based assay systems. BioImpacts 8, 201–209.
doi: 10.15171/bi.2018.23
Sonnenburg, E.D., Smits, S.A., Tikhonov, M., Higginbottom, S.K., Wingreen, N.S., and Sonnenburg, J.L. (2016). Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212–215.
doi: 10.1038/nature16504
Suez, J., Korem, T., Zeevi, D., Zilberman-Schapira, G., Thaiss, C.A., Maza, O., Israeli, D., Zmora, N., Gilad, S., Weinberger, A., et al. (2014). Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514, 181–186.
doi: 10.1038/nature13793
Szunerits, S., Maalouli, N., Wijaya, E., Vilcot, J.P., and Boukherroub, R. (2013). Recent advances in the development of graphene-based surface plasmon resonance (SPR) interfaces. Anal Bioanal Chem 405, 1435–1443.
doi: 10.1007/s00216-012-6624-0
Tap, J., Störsrud, S., Le Nevé, B., Cotillard, A., Pons, N., Doré, J., Öhman, L., Törnblom, H., Derrien, M., and Simrén, M. (2021). Diet and gut microbiome interactions of relevance for symptoms in irritable bowel syndrome. Microbiome 9, 74.
doi: 10.1186/s40168-021-01018-9
Trott, O., and Olson, A.J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31, 455.
Turnbaugh, P.J., Ridaura, V.K., Faith, J.J., Rey, F.E., Knight, R., and Gordon, J.I. (2009). The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1, 6ra14.
doi: 10.1126/scitranslmed.3000322
Vich Vila, A., Collij, V., Sanna, S., Sinha, T., Imhann, F., Bourgonje, A.R., Mujagic, Z., Jonkers, D.M.A.E., Masclee, A.A.M., Fu, J., et al. (2020). Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat Commun 11, 362.
doi: 10.1038/s41467-019-14177-z
Wan, Y., Wang, F., Yuan, J., Li, J., Jiang, D., Zhang, J., Li, H., Wang, R., Tang, J., Huang, T., et al. (2019). Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut 68, 1417–1429.
doi: 10.1136/gutjnl-2018-317609
Weersma, R.K., Zhernakova, A., and Fu, J. (2020). Interaction between drugs and the gut microbiome. Gut 69, 1510–1519.
doi: 10.1136/gutjnl-2019-320204
Wen, Z., Yan, C., Duan, G., Li, S., Wu, F.X., and Wang, J. (2021). A survey on predicting microbe-disease associations: biological data and computational methods. Briefings BioInf 22, bbaa157.
doi: 10.1093/bib/bbaa157
Wishart, D.S., Feunang, Y.D., Guo, A.C., Lo, E.J., Marcu, A., Grant, J.R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., et al. (2018). DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46, D1074–D1082.
doi: 10.1093/nar/gkx1037
Wu, H., Esteve, E., Tremaroli, V., Khan, M.T., Caesar, R., Mannerås-Holm, L., Ståhlman, M., Olsson, L.M., Serino, M., Planas-Fèlix, M., et al. (2017). Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 23, 850–858.
doi: 10.1038/nm.4345
Wu, S., Liu, C., Feng, J., Yang, A., Guo, F., and Qiao, J. (2020a). QSIdb: quorum sensing interference molecules. Briefings BioInf 22, bbaa218.
doi: 10.1093/bib/bbaa218
Wu, S., Liu, J., Liu, C., Yang, A., and Qiao, J. (2020b). Quorum sensing for population-level control of bacteria and potential therapeutic applications. Cell Mol Life Sci 77, 1319–1343.
doi: 10.1007/s00018-019-03326-8
Wu, S., Qiao, J., Yang, A., and Liu, C. (2022). Potential of orthogonal and cross-talk quorum sensing for dynamic regulation in cocultivation. Chem Eng J 445, 136720.
doi: 10.1016/j.cej.2022.136720
Wu, S., Xu, C., Liu, J., Liu, C., and Qiao, J. (2021b). Vertical and horizontal quorum-sensing-based multicellular communications. Trends Microbiol 29, 1130–1142.
doi: 10.1016/j.tim.2021.04.006
Wu, S., Xue, Y., Yang, S., Xu, C., Liu, C., Liu, X., Liu, J., Zhu, H., Zhao, G.R., Yang, A., et al. (2021c). Combinational quorum sensing devices for dynamic control in cross-feeding cocultivation. Metab Eng 67, 186–197.
doi: 10.1016/j.ymben.2021.07.002
Wynendaele, E., Bronselaer, A., Nielandt, J., D’Hondt, M., Stalmans, S., Bracke, N., Verbeke, F., Van De Wiele, C., De Tré, G., and De Spiegeleer, B. (2013). Quorumpeps database: chemical space, microbial origin and functionality of quorum sensing peptides. Nucleic Acids Res 41, D655–D659.
doi: 10.1093/nar/gks1137
Xiong, Z., Cheng, Z., Lin, X., Xu, C., Liu, X., Wang, D., Luo, X., Zhang, Y., Jiang, H., Qiao, N., et al. (2022). Facing small and biased data dilemma in drug discovery with enhanced federated learning approaches. Sci China Life Sci 65, 529–539.
doi: 10.1007/s11427-021-1946-0
Yang, F., and Zou, Q. (2021). DisBalance: a platform to automatically build balance-based disease prediction models and discover microbial biomarkers from microbiome data. Briefings BioInf 22, bbab094.
doi: 10.1093/bib/bbab094
Yang, L., Rybtke, M.T., Jakobsen, T.H., Hentzer, M., Bjarnsholt, T., Givskov, M., and Tolker-Nielsen, T. (2009). Computer-aided identification of recognized drugs as Pseudomonas aeruginosa quorum-sensing inhibitors. Antimicrob Agents Chemother 53, 2432–2443.
doi: 10.1128/AAC.01283-08
Zeng, X., Yang, X., Fan, J., Tan, Y., Ju, L., Shen, W., Wang, Y., Wang, X., Chen, W., Ju, D., et al. (2021). MASI: microbiota-active substance interactions database. Nucleic Acids Res 49, D776–D782.
doi: 10.1093/nar/gkaa924
Zhang, Q., Yu, K., Li, S., Zhang, X., Zhao, Q., Zhao, X., Liu, Z., Cheng, H., Liu, Z.X., and Li, X. (2021). gutMEGA: a database of the human gut MEtaGenome Atlas. Briefings BioInf 22, bbaa082.
doi: 10.1093/bib/bbaa082
Zhang, R., Pappas, K.M., Pappas, T., Brace, J.L., Miller, P.C., Oulmassov, T., Molyneaux, J.M., Anderson, J.C., Bashkin, J.K., Winans, S.C., et al. (2002). Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature 417, 971–974.
doi: 10.1038/nature00833
Zhang, Y., Gu, Y., Ren, H., Wang, S., Zhong, H., Zhao, X., Ma, J., Gu, X., Xue, Y., Huang, S., et al. (2020). Gut microbiome-related effects of berberine and probiotics on type 2 diabetes (the PREMOTE study). Nat Commun 11, 5015.
doi: 10.1038/s41467-020-18414-8
Zhao, R., Coker, O.O., Wu, J., Zhou, Y., Zhao, L., Nakatsu, G., Bian, X., Wei, H., Chan, A.W.H., Sung, J.J.Y., et al. (2020). Aspirin reduces colorectal tumor development in mice and gut microbes reduce its bioavailability and chemopreventive effects. Gastroenterology 159, 969–983.
doi: 10.1053/j.gastro.2020.05.004
Zhao, Y., Wang, C.C., and Chen, X. (2021). Microbes and complex diseases: from experimental results to computational models. Briefings BioInf 22, bbaa158.
doi: 10.1093/bib/bbaa158
Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R., and Goodman, A.L. (2019). Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570, 462–467.
doi: 10.1038/s41586-019-1291-3