Image enhancement techniques on deep learning approaches for automated diagnosis of COVID-19 features using CXR images.

COVID-19 analysis Chest X-ray Deep learning Image denoising Image enhancement Pneumonia classification

Journal

Multimedia tools and applications
ISSN: 1380-7501
Titre abrégé: Multimed Tools Appl
Pays: United States
ID NLM: 101555932

Informations de publication

Date de publication:
2022
Historique:
received: 30 06 2021
revised: 16 09 2021
accepted: 13 07 2022
pubmed: 9 8 2022
medline: 9 8 2022
entrez: 8 8 2022
Statut: ppublish

Résumé

The outbreak of novel coronavirus (COVID-19) disease has infected more than 135.6 million people globally. For its early diagnosis, researchers consider chest X-ray examinations as a standard screening technique in addition to RT-PCR test. Majority of research work till date focused only on application of deep learning approaches that is relevant but lacking in better pre-processing of CXR images. Towards this direction, this study aims to explore cumulative effects of image denoising and enhancement approaches on the performance of deep learning approaches. Regarding pre-processing, suitable methods for X-ray images, Histogram equalization, CLAHE and gamma correction have been tested individually and along with adaptive median filter, median filter, total variation filter and gaussian denoising filters. Proposed study compared eleven combinations in exploration of most coherent approach in greedy manner. For more robust analysis, we compared ten CNN architectures for performance evaluation with and without enhancement approaches. These models are InceptionV3, InceptionResNetV2, MobileNet, MobileNetV2, Vgg19, NASNetMobile, ResNet101, DenseNet121, DenseNet169, DenseNet201. These models are trained in 4-way (COVID-19 pneumonia vs Viral vs Bacterial pneumonia vs Normal) and 3-way classification scenario (COVID-19 vs Pneumonia vs Normal) on two benchmark datasets. The proposed methodology determines with TVF + Gamma, models achieve higher classification accuracy and sensitivity. In 4-way classification MobileNet with TVF + Gamma achieves top accuracy of 93.25% with 1.91% improvement in accuracy score, COVID-19 sensitivity of 98.72% and F1-score of 92.14%. In 3-way classification our DenseNet201 with TVF + Gamma gains accuracy of 91.10% with improvement of 1.47%, COVID-19 sensitivity of 100% and F1-score of 91.09%. Proposed study concludes that deep learning modes with gamma correction and TVF + Gamma has superior performance compared to state-of-the-art models. This not only minimizes overlapping between COVID-19 and virus pneumonia but advantageous in time required to converge best possible results.

Identifiants

pubmed: 35938148
doi: 10.1007/s11042-022-13486-8
pii: 13486
pmc: PMC9340712
doi:

Types de publication

Journal Article

Langues

eng

Pagination

42649-42690

Informations de copyright

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.

Déclaration de conflit d'intérêts

Conflict of interestThe authors declare that they have no conflict of interest.

Références

Artif Intell Med. 2020 Aug;108:101935
pubmed: 32972664
AJR Am J Roentgenol. 2000 Jan;174(1):71-4
pubmed: 10628457
Comput Biol Med. 2020 Jun;121:103792
pubmed: 32568675
AJR Am J Roentgenol. 2020 Oct;215(4):834-838
pubmed: 32412790
IEEE Access. 2020 Dec 14;8:226811-226827
pubmed: 34786299
PLoS Med. 2018 Nov 20;15(11):e1002686
pubmed: 30457988
IEEE Trans Med Imaging. 2019 Jul;38(7):1588-1598
pubmed: 30507498
Appl Intell (Dordr). 2021;51(3):1492-1512
pubmed: 34764576
Quant Imaging Med Surg. 2014 Dec;4(6):475-7
pubmed: 25525580
Cognit Comput. 2021 Jan 4;:1-13
pubmed: 33425044
Appl Intell (Dordr). 2021;51(1):341-358
pubmed: 35194321
IEEE Access. 2021 Jun 02;9:85442-85454
pubmed: 34812397
Comput Methods Programs Biomed. 2020 Nov;196:105581
pubmed: 32534344
Chaos Solitons Fractals. 2020 Nov;140:110122
pubmed: 32834634
Cognit Comput. 2021 Mar 2;:1-30
pubmed: 33680209
Neural Comput Appl. 2022;34(14):11423-11440
pubmed: 33487885
Appl Intell (Dordr). 2021;51(5):3026-3043
pubmed: 34764582
Phys Eng Sci Med. 2020 Jun;43(2):635-640
pubmed: 32524445
Ing Rech Biomed. 2022 Apr;43(2):114-119
pubmed: 32837679
IEEE Access. 2021 Feb 22;9:36019-36037
pubmed: 34812381
Appl Intell (Dordr). 2021;51(3):1351-1366
pubmed: 34764551
Sci Rep. 2020 Dec 28;10(1):22402
pubmed: 33372194
Cognit Comput. 2021 Feb 5;:1-14
pubmed: 33564340
IEEE Trans Med Imaging. 2020 Aug;39(8):2688-2700
pubmed: 32396075
Pattern Recognit. 2022 Nov;131:108826
pubmed: 35698723
IEEE J Biomed Health Inform. 2021 May;25(5):1336-1346
pubmed: 33560995
Sci Rep. 2020 Nov 11;10(1):19549
pubmed: 33177550
Pattern Recognit Lett. 2020 Oct;138:638-643
pubmed: 32958971
Appl Intell (Dordr). 2021;51(2):854-864
pubmed: 34764548
J Biomol Struct Dyn. 2022 Aug;40(13):5836-5847
pubmed: 33475019
IEEE Trans Mol Biol Multiscale Commun. 2021 Jul 26;8(1):17-27
pubmed: 35935666
Comput Biol Med. 2020 Jul;122:103869
pubmed: 32658740
IEEE Trans Med Imaging. 2020 Feb 14;:
pubmed: 32078541
IEEE Access. 2020 May 14;8:91916-91923
pubmed: 34192100
Appl Soft Comput. 2021 Jan;98:106885
pubmed: 33192206
Amino Acids. 2010 Nov;39(5):1385-91
pubmed: 20411285
Cogn Neurodyn. 2022 Feb;16(1):73-90
pubmed: 35126771
Inform Med Unlocked. 2020;20:100412
pubmed: 32835084
Phys Eng Sci Med. 2021 Mar;44(1):183-194
pubmed: 33459996
Appl Intell (Dordr). 2021;51(5):2689-2702
pubmed: 34764554
Med Image Anal. 2020 Oct;65:101794
pubmed: 32781377

Auteurs

Ajay Sharma (A)

Department of Computer Science, Institute of Science, Banaras Hindu University, Varanasi, 221005 India.

Pramod Kumar Mishra (PK)

Department of Computer Science, Institute of Science, Banaras Hindu University, Varanasi, 221005 India.

Classifications MeSH