Mechanical strain stimulates COPII-dependent secretory trafficking via Rac1.
COPII
endoplasmic reticulum
mechanobiology
Journal
The EMBO journal
ISSN: 1460-2075
Titre abrégé: EMBO J
Pays: England
ID NLM: 8208664
Informations de publication
Date de publication:
15 09 2022
15 09 2022
Historique:
revised:
29
06
2022
received:
04
01
2022
accepted:
05
07
2022
pubmed:
9
8
2022
medline:
17
9
2022
entrez:
8
8
2022
Statut:
ppublish
Résumé
Cells are constantly exposed to various chemical and physical stimuli. While much has been learned about the biochemical factors that regulate secretory trafficking from the endoplasmic reticulum (ER), much less is known about whether and how this trafficking is subject to regulation by mechanical signals. Here, we show that subjecting cells to mechanical strain both induces the formation of ER exit sites (ERES) and accelerates ER-to-Golgi trafficking. We found that cells with impaired ERES function were less capable of expanding their surface area when placed under mechanical stress and were more prone to develop plasma membrane defects when subjected to stretching. Thus, coupling of ERES function to mechanotransduction appears to confer resistance of cells to mechanical stress. Furthermore, we show that the coupling of mechanotransduction to ERES formation was mediated via a previously unappreciated ER-localized pool of the small GTPase Rac1. Mechanistically, we show that Rac1 interacts with the small GTPase Sar1 to drive budding of COPII carriers and stimulates ER-to-Golgi transport. This interaction therefore represents an unprecedented link between mechanical strain and export from the ER.
Identifiants
pubmed: 35938214
doi: 10.15252/embj.2022110596
pmc: PMC9475550
doi:
Substances chimiques
Monomeric GTP-Binding Proteins
EC 3.6.5.2
Banques de données
PDB
['1F6B', '2WKP', '1MH1', '6X90', '1M2O']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e110596Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2022 The Authors. Published under the terms of the CC BY 4.0 license.
Références
EMBO J. 2011 Aug 16;30(18):3684-700
pubmed: 21847093
Mol Cell. 2022 Sep 1;82(17):3255-3269.e8
pubmed: 35987199
Traffic. 2013 Jun;14(6):691-708
pubmed: 23433038
Cardiovasc Res. 2011 Apr 1;90(1):88-96
pubmed: 21131638
Front Cell Dev Biol. 2019 Jul 16;7:127
pubmed: 31380367
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
Nat Protoc. 2016 Jan;11(1):118-33
pubmed: 26678082
J Biol Chem. 2007 Mar 9;282(10):7679-89
pubmed: 17210573
J Cell Biol. 2002 Dec 23;159(6):915-21
pubmed: 12499351
Science. 2005 Nov 18;310(5751):1139-43
pubmed: 16293750
Front Bioeng Biotechnol. 2020 Oct 22;8:597721
pubmed: 33195167
J Biol Chem. 2020 Oct 2;295(40):13698-13710
pubmed: 32817335
J Cell Biol. 2021 Jun 7;220(6):
pubmed: 33999114
J Cell Biol. 2021 Jun 7;220(6):
pubmed: 33852719
Nat Commun. 2018 May 29;9(1):2124
pubmed: 29844364
J Cell Biol. 2017 Jun 5;216(6):1731-1743
pubmed: 28442536
Nat Cell Biol. 2006 Apr;8(4):377-83
pubmed: 16531996
J Mol Biol. 2014 Nov 11;426(22):3811-3826
pubmed: 25193674
Curr Protoc Cell Biol. 2012 Dec;Chapter 15:15.19.1-15.19.16
pubmed: 23208546
Proc Natl Acad Sci U S A. 2004 May 18;101(20):7618-23
pubmed: 15128949
FEBS Lett. 2019 Sep;593(17):2280-2288
pubmed: 31381144
Nat Methods. 2012 Mar 11;9(5):493-8
pubmed: 22406856
Bioinformatics. 2014 Oct 15;30(20):2981-2
pubmed: 24996895
Elife. 2016 Dec 06;5:
pubmed: 27919320
Nat Commun. 2015 Jun 15;6:7292
pubmed: 26073653
Nature. 2017 Mar 2;543(7643):118-121
pubmed: 28199303
Proteins. 2003 Jul 1;52(1):80-7
pubmed: 12784371
Cell. 1995 Apr 7;81(1):53-62
pubmed: 7536630
Protein Eng. 1996 Nov;9(11):1063-5
pubmed: 8961360
Curr Opin Cell Biol. 2013 Oct;25(5):543-9
pubmed: 23726023
J Biol Chem. 2005 Mar 4;280(9):7758-68
pubmed: 15623526
Biophys J. 2014 Jun 3;106(11):2340-52
pubmed: 24896113
Cell. 2006 Aug 25;126(4):677-89
pubmed: 16923388
Circ Res. 2007 Aug 31;101(5):e44-52
pubmed: 17712140
FASEB J. 2004 Oct;18(13):1524-35
pubmed: 15466361
Cell. 2008 Jul 11;134(1):135-47
pubmed: 18614017
Cell. 2019 Mar 7;176(6):1461-1476.e23
pubmed: 30849374
EMBO J. 2008 Aug 6;27(15):2043-54
pubmed: 18650939
FEBS Lett. 2020 Jul;594(14):2240-2253
pubmed: 32394429
J Biochem. 2017 Mar 1;161(3):245-254
pubmed: 28082721
Cell. 2021 Apr 29;184(9):2412-2429.e16
pubmed: 33852913
J Cell Biol. 2019 Aug 5;218(8):2470-2480
pubmed: 31227593
J Biol Chem. 2001 Mar 23;276(12):8958-67
pubmed: 11134022
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W294-7
pubmed: 22649060
Am J Physiol Lung Cell Mol Physiol. 2008 Nov;295(5):L958-65
pubmed: 18805958
Physiol Rev. 2020 Apr 1;100(2):695-724
pubmed: 31751165
Cell. 1999 Jul 9;98(1):69-80
pubmed: 10412982
Bioinformatics. 2004 Jan 1;20(1):45-50
pubmed: 14693807
EMBO J. 2022 Sep 15;41(18):e110596
pubmed: 35938214
Nat Methods. 2010 Dec;7(12):973-5
pubmed: 21037589
Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W229-32
pubmed: 18424796
J Chem Inf Model. 2021 Jul 26;61(7):3543-3558
pubmed: 34196179
Nat Commun. 2018 Nov 16;9(1):4816
pubmed: 30446664
Sci Signal. 2014 Jun 17;7(330):ra57
pubmed: 24939893
Nat Protoc. 2017 Feb;12(2):255-278
pubmed: 28079879
J Cell Biol. 2010 Jun 14;189(6):997-1011
pubmed: 20548102
J Cell Biol. 2002 Jul 8;158(1):153-64
pubmed: 12105187
Sci Signal. 2013 Jul 23;6(285):rs12
pubmed: 23882122
J Biol Chem. 2019 Jul 12;294(28):10877-10885
pubmed: 31138654
J Biol Chem. 2021 Jan-Jun;296:100129
pubmed: 33262217
Curr Opin Cell Biol. 2018 Oct;54:50-56
pubmed: 29723737
Methods. 2017 Feb 15;115:55-64
pubmed: 27890650
J Cell Sci. 2015 Feb 15;128(4):670-82
pubmed: 25526736
Biochem Biophys Res Commun. 2007 Feb 23;353(4):1023-7
pubmed: 17207463
PLoS One. 2011;6(9):e24657
pubmed: 21949741
J Cell Biol. 2016 Nov 21;215(4):543-558
pubmed: 27872256
Proteins. 2007 Oct 1;69(1):139-59
pubmed: 17598144
Curr Biol. 2016 Jan 11;26(1):27-37
pubmed: 26725196
Nat Commun. 2016 Aug 12;7:12471
pubmed: 27514992
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W363-7
pubmed: 15980490