Autonomous Chiral Microswimmers with Self-mixing Capabilities for Highly Efficient Enantioselective Synthesis.
Enantioselectivity
Inherently Chiral Oligomers
Microswimmers
Redox Conversion
Self-Propulsion
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
04 Oct 2022
04 Oct 2022
Historique:
received:
21
06
2022
pubmed:
9
8
2022
medline:
9
8
2022
entrez:
8
8
2022
Statut:
ppublish
Résumé
The development of chiral catalysts plays a very important role in various areas of chemical science. Heterogeneous catalysts have the general advantage of allowing a more straightforward separation from the products. One specific case of heterogeneous catalysis is electrocatalysis, being potentially a green chemistry approach. However, a typical drawback is that the redox conversion of molecules occurs only at the electrode/electrolyte interface, and not in the bulk of the electrolyte. The second limitation is that the electrodes have to be physically connected to a power supply to induce the desired reactions. To circumvent these problems, we propose here a complementary approach by replacing macroscopic electrodes with an ensemble of self-propelled redox active microswimmers. They move autonomously in solution while transforming simultaneously a prochiral starting compound into a specific enantiomer with a very high enantiomeric excess, accompanied by a significantly increased production rate of the favorite enantiomer.
Identifiants
pubmed: 35939399
doi: 10.1002/anie.202209098
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202209098Subventions
Organisme : H2020 European Research Council
ID : n° 741251, ERC Advanced grant ELECTRA
Informations de copyright
© 2022 Wiley-VCH GmbH.
Références
F. Zaera, Chem. Soc. Rev. 2017, 46, 7374-7398.
D. Pollok, S. R. Waldvogel, Chem. Sci. 2020, 11, 12386-12400.
B. Bloom, Y. Lu, T. Metzger, S. Yochelis, Y. Paltiel, C. Fontanesi, S. Mishra, F. Tassinari, R. Naaman, D. H. Waldeck, Phys. Chem. Chem. Phys. 2020, 22, 21570-21582.
X. Huang, Q. Zhang, J. Lin, K. Harms, E. Meggers, Nat. Catal. 2019, 2, 34-40.
S. B. Beil, D. Pollok, S. R. Waldvogel, Angew. Chem. Int. Ed. 2021, 60, 14750-14759;
Angew. Chem. 2021, 133, 14874-14883.
R. D. Little, J. Org. Chem. 2020, 85, 13375-13390.
G. Hilt, ChemElectroChem 2020, 7, 395-405.
T. H. Meyer, I. Choi, C. Tian, L. Ackermann, Chem 2020, 6, 2484-2496.
S. Abe, T. Nonaka, T. Fuchigami, J. Am. Chem. Soc. 1983, 105, 3630-3632.
S. Abe, T. Fuchigami, T. Nonaka, Chem. Lett. 1983, 12, 1033-1036.
N. Takano, C. Seki, Electrochemistry 2006, 74, 596-598.
J. Wang, Nanomachines: Fundamentals and Applications, Wiley, Hoboken, 2013.
W. Duan, W. Wang, S. Das, V. Yadav, T. E. Mallouk, A. Sen, Annu. Rev. Anal. Chem. 2015, 8, 311-333.
M. Pacheco, M. A. Lopez, B. Jurado-Sanchez, A. Escarpa, Anal. Bioanal. Chem. 2019, 411, 6561-6573.
F. Novotný, H. Wang, M. Pumera, Chem 2020, 6, 867-884.
G. Salinas, S. M. Beladi-Mousavi, A. Kuhn, Curr. Opin. Electrochem. 2022, 32, 100887.
J. Simmchen, L. Baraban, W. Wang, ChemNanoMat 2022, 8, e202100504.
P. Sharan, A. Nsamela, S. C. Lesher-Perez, J. Simmchen, Small 2021, 17, 2007403.
G. A. Ozin, I. Manners, S. Fournier-Bidoz, A. Arsenault, Adv. Mater. 2005, 17, 3011-3018.
A. A. Solovev, Y. Mei, E. Bermudez-Urena, G. Huang, O. G. Schmidt, Small 2009, 5, 1688-1692.
W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St Angelo, Y. Cao, T. E. Mallouk, P. E. Lammert, V. H. Crespi, J. Am. Chem. Soc. 2004, 126, 13424-13431.
R. Lin, W. Yu, X. Chen, H. Gao, Adv. Healthcare Mater. 2021, 10, 2001212.
L. Kong, J. Guan, M. Pumera, Curr. Opin. Electrochem. 2018, 10, 174-182.
J. Ou, K. Liu, J. Jianf, D. A. Wilson, L. Liu, F. Wang, S. Wang, Y. Tu, F. Peng, Small 2020, 16, 1906184.
P. L. Venugopalan, B. E. F. De Ávila, M. Pal, A. Ghosh, J. Wang, ACS Nano 2020, 14, 9423-9439.
Z. Wu, L. Li, Y. Yang, P. Hu, Y. Li, S. Y. Yang, L. V. Wang, W. Gao, Sci. Robot. 2019, 4, eaax0613.
Z. Wu, Y. Chen, D. Mukasa, O. S. Pak, W. Gao, Chem. Soc. Rev. 2020, 49, 8088-8112.
B. Jurado-Sánchez, J. Wang, Environ. Sci. Nano 2018, 5, 1530-1544.
J. Parmar, D. Vilela, K. Villa, J. Wang, S. Sanchez, J. Am. Chem. Soc. 2018, 140, 9317-9331.
T. Patino, A. Porchetta, A. Jannasch, A. Llado, T. Stumpp, E. Schaffer, F. Ricci, S. Sanchez, Nano Lett. 2019, 19, 3440-3447.
K. Yuan, M. A. López, B. Jurado-Sánchez, A. Escarpa, ACS Appl. Mater. Interfaces 2020, 12, 46588-46597.
S. Palagi, P. Fischer, Nat. Rev. Mater. 2018, 3, 113-124.
J. Bastos-Arrieta, A. Revilla-Guarinos, W. E. Uspal, J. Simmchen, Front. Robot. AI 2018, 5, 97.
L. Baraban, S. M. Harazim, S. Sanchez, O. G. Schmidt, Angew. Chem. Int. Ed. 2013, 52, 5552-5556;
Angew. Chem. 2013, 125, 5662-5666.
M. Fernández-Medina, M. A. Ramos-Docampo, O. Hovorka, V. Salgueirino, B. Stadler, Adv. Funct. Mater. 2020, 30, 1908283.
C. W. Shields IV, O. D. Velev, Chem 2017, 3, 539-559.
H. Zhou, C. C. Mayorga-Martinez, S. Pane, L. Zhang, M. Pumera, Chem. Rev. 2021, 121, 4999-5041.
A. D. Ruvalcaba-Cardenas, P. Thurgood, S. Chen, K. Khoshmanesh, F. J. Tovar-Lopez, ACS Appl. Mater. Interfaces 2019, 11, 39283-39291.
F. Martínez-Pedrero, F. Ortega, R. G. Rubio, C. Calero, Adv. Funct. Mater. 2020, 30, 2002206.
Y. Sun, Y. Liu, D. Zhang, H. Zhang, J. Jiang, R. Duan, J. Xiao, D. Zhang, B. Dong, ACS Appl. Mater. Interfaces 2019, 11, 40533-40542.
Q. Wang, R. Dong, C. Wang, S. Xu, D. Chen, Y. Liang, B. Ren, W. Gao, Y. Cai, ACS Appl. Mater. Interfaces 2019, 11, 6201-6207.
K. Han, C. W. Shields IV, O. D. Velev, Adv. Funct. Mater. 2018, 28, 1705953.
A. M. Brooks, M. Tasinkevych, S. Sabrina, D. Velegol, A. Sen, K. J. M. Bishop, Nat. Commun. 2019, 10, 495.
G. Salinas, K. Tieriekhov, P. Garrigue, N. Sojic, L. Bouffier, A. Kuhn, J. Am. Chem. Soc. 2021, 143, 12708-12714.
S. Palagi, D. P. Singh, P. Fischer, Adv. Opt. Mater. 2019, 7, 1900370.
E. Karshalev, B. E. F. De Ávila, J. Wang, J. Am. Chem. Soc. 2018, 140, 3810-3820.
Y. Hu, W. Liu, Y. Sun, ACS Appl. Mater. Interfaces 2020, 12, 41495-41505.
M. Pacheco, B. Jurado-Sanchez, A. Escarpa, Chem. Sci. 2018, 9, 8056-8064.
L. García-Carmona, M. Moreno-Guzmán, M. C. González, A. Escarpa, Biosens. Bioelectron. 2017, 96, 275-280.
J. Munoz, M. Urso, M. Pumera, Angew. Chem. Int. Ed. 2022, 61, e202116090;
Angew. Chem. Int. Ed. 2022, 134, e202116090.
S. Arnaboldi, T. Benincori, R. Cirilli, W. Kutner, M. Magni, P. R. Mussini, Noworyta, F. Sannicolo, Chem. Sci. 2015, 6, 1706-1711.
S. Arnaboldi, B. Gupta, T. Benincori, G. Bonetti, R. Cirilli, A. Kuhn, Anal. Chem. 2020, 92, 10042-10047.
S. Arnaboldi, G. Salinas, G. Bonetti, R. Cirilli, T. Benincori, A. Kuhn, ACS Meas. Sci. Au 2021, 1, 110-116.
G. Salinas, S. Arnaboldi, G. Bonetti, R. Cirilli, T. Benincori, A. Kuhn, Chirality 2021, 33, 875-882.
G. Salinas, G. Bonetti, R. Cirilli, T. Benincori, A. Kuhn, S. Arnaboldi, Electrochim. Acta 2022, 421, 140494.
S. Arnaboldi, G. Salinas, A. Karajic, P. Garrigue, T. Benincori, G. Bonetti, R. Cirilli, S. Bichon, S. Gounel, N. Mano, A. Kuhn, Nat. Chem. 2021, 13, 1241-1247.
I. Matanović, Nat. Catal. 2019, 2, 186-187.
A. Rosetti, G. Bonetti, C. Villani, T. Benincori, R. Cirilli, Chirality 2021, 33, 146-152.
F. Sannicolò, P. R. Mussini, T. Benincori, R. Cirilli, S. Abbate, S. Arnaboldi, S. Casolo, E. Castiglioni, G. Longhi, R. Martinazzo, M. Panigati, M. Pappini, E. Quartapelle Procopio, S. Rizzo, Chem. Eur. J. 2014, 20, 15298-15302.
D. C. Cantu, A. B. Padmaperuma, M. T. Nguyen, S. A. Akhade, Y. Yoon, Y. G. Wang, M. S. Lee, V. A. Glezakou, R. Rousseau, M. A. Lilga, ACS Catal. 2018, 8, 7645-7658.
Y. Kodama, M. Imoto, N. Ohta, A. Kitani, S. Ito, J. Electroanal. Chem. 2001, 507, 103-109.