Mapping ex ante risks of COVID-19 in Indonesia using a Bayesian geostatistical model on airport network data.
Bayesian geostatistics
COVID‐19
INLA‐SPDE
Indonesia
disease mapping
network analysis
Journal
Journal of the Royal Statistical Society. Series A, (Statistics in Society)
ISSN: 0964-1998
Titre abrégé: J R Stat Soc Ser A Stat Soc
Pays: England
ID NLM: 9001406
Informations de publication
Date de publication:
18 Jul 2022
18 Jul 2022
Historique:
received:
11
04
2021
accepted:
15
04
2022
entrez:
9
8
2022
pubmed:
10
8
2022
medline:
10
8
2022
Statut:
aheadofprint
Résumé
A rapid response to global infectious disease outbreaks is crucial to protect public health. Ex ante information on the spatial probability distribution of early infections can guide governments to better target protection efforts. We propose a two-stage statistical approach to spatially map the ex ante importation risk of COVID-19 and its uncertainty across Indonesia based on a minimal set of routinely available input data related to the Indonesian flight network, traffic and population data, and geographical information. In a first step, we use a generalised additive model to predict the ex ante COVID-19 risk for 78 domestic Indonesian airports based on data from a global model on the disease spread and covariates associated with Indonesian airport network flight data prior to the global COVID-19 outbreak. In a second step, we apply a Bayesian geostatistical model to propagate the estimated COVID-19 risk from the airports to all of Indonesia using freely available spatial covariates including traffic density, population and two spatial distance metrics. The results of our analysis are illustrated using exceedance probability surface maps, which provide policy-relevant information accounting for the uncertainty of the estimates on the location of areas at risk and those that might require further data collection.
Identifiants
pubmed: 35942194
doi: 10.1111/rssa.12866
pii: RSSA12866
pmc: PMC9350309
doi:
Types de publication
Journal Article
Langues
eng
Informations de copyright
© 2022 The Authors. Journal of the Royal Statistical Society: Series A (Statistics in Society) published by John Wiley & Sons Ltd on behalf of Royal Statistical Society.
Références
Science. 2020 May 15;368(6492):742-746
pubmed: 32269067
JAMA. 2020 Apr 14;323(14):1339-1340
pubmed: 32108857
Arch Virol. 2020 Nov;165(11):2555-2560
pubmed: 32880019
N Engl J Med. 2020 Feb 20;382(8):727-733
pubmed: 31978945
Urban Clim. 2020 Dec;34:100680
pubmed: 32834966
J Clin Med. 2020 Mar 20;9(3):
pubmed: 32244852
Nature. 2018 Jan 18;553(7688):333-336
pubmed: 29320477
Neural Comput. 2017 Feb;29(2):313-331
pubmed: 27870616
J Med Virol. 2021 Feb;93(2):820-830
pubmed: 32691881
Adv Parasitol. 2006;62:293-343
pubmed: 16647974
Int J Infect Dis. 2020 Jul;96:398
pubmed: 32417245
Sci Data. 2020 Oct 8;7(1):345
pubmed: 33033256
J Travel Med. 2020 Aug 20;27(5):
pubmed: 32502274
J Glob Health. 2020 Dec;10(2):020306
pubmed: 33110510
Model Earth Syst Environ. 2021;7(1):623-629
pubmed: 33072850
J R Stat Soc Ser A Stat Soc. 2022 Jan;185(1):202-218
pubmed: 34908651
Global Health. 2020 May 12;16(1):45
pubmed: 32398137
Lancet. 2017 Nov 11;390(10108):2171-2182
pubmed: 28958464
Lancet. 2014 May 17;383(9930):1739-47
pubmed: 24559537
Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2015-20
pubmed: 16461461
Lancet Infect Dis. 2020 May;20(5):553-558
pubmed: 32171059
Nature. 2015 Oct 8;526(7572):207-211
pubmed: 26375008
Transp Policy (Oxf). 2020 Aug;94:34-42
pubmed: 32501380
Nat Microbiol. 2020 Apr;5(4):536-544
pubmed: 32123347
Lancet. 2019 Jul 27;394(10195):322-331
pubmed: 31229234
Int J Environ Res Public Health. 2019 Apr 05;16(7):
pubmed: 30959783
China CDC Wkly. 2020 Feb 21;2(8):113-122
pubmed: 34594836
Sci Total Environ. 2020 Aug 10;729:139016
pubmed: 32361458
Sci Total Environ. 2020 Jul 10;725:138436
pubmed: 32298883
Lancet Infect Dis. 2016 Nov;16(11):1237-1245
pubmed: 27593584