Hypverventilation strain CMR imaging in patients with acute chest pain.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
09 08 2022
09 08 2022
Historique:
received:
27
04
2022
accepted:
02
08
2022
entrez:
9
8
2022
pubmed:
10
8
2022
medline:
12
8
2022
Statut:
epublish
Résumé
In patients with suspected acute coronary syndrome high-sensitivity cardiac tropnonin T is used for rapid patient triage. Some acute coronary syndrome patients assigned to the observe zone based on high-sensitivity cardiac troponin T after 1 h require further diagnostic testing. Fast-strain encoded CMR imaging with breathing maneuvers may accelerate diagnostic work-up and identify patients suffering from acute coronary syndrome. Patients presenting with acute chest pain (high-sensitivity cardiac troponin T level 5-52 ng/L) were prospectively enrolled (consecutive sampling, time of recruitment: 09/18-06/19). Fast-strain-encoded imaging was performed within the 1-h timeframe (0 h/1 h algorithm) prior to 2nd high-sensitivity troponin T lab results. Images were acquired at rest as well as after 1-min of hyperventilation followed by a short breath-hold. In 108 patients (59 male; mean age: 57 ± 17y) the mean study time was 17 ± 3 min. An abnormal strain response after the breathing maneuver (persistent/increased/new onset of increased strain rates) correctly identified all 17 patients with a high-sensitivity troponin T dynamic (0 h/1 h algorithm) and explanatory significant coronary lesions, while in 86 patients without serologic or angiographic evidence for severe coronary artery disease the strain response was normal (sensitivity 100%, specificity 94.5%; 5 false positive results). The number of dysfunctional segments (strain > - 10%) proved to be a quantifiable marker for identifying patients with acute coronary syndrome. In patients with suspected acute coronary syndrome and inconclusive initial high-sensitivity troponin T, fast-strain-encoded imaging with a breathing maneuver may safely and rapidly identify patients with acute coronary syndrome, without the need for vasodilators, stress, or contrast agents.
Identifiants
pubmed: 35945332
doi: 10.1038/s41598-022-17856-y
pii: 10.1038/s41598-022-17856-y
pmc: PMC9363440
doi:
Substances chimiques
Biomarkers
0
Troponin T
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
13584Informations de copyright
© 2022. The Author(s).
Références
Zhang, M. B. et al. Comparison of early and delayed invasive strategies in short-medium term among patients with non-ST segment elevation acute coronary syndrome: A systematic review and meta-analysis. PLoS ONE 14(8), e0220847 (2019).
doi: 10.1371/journal.pone.0220847
Roffi, M. et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur. Heart J. 37(3), 267–315 (2016).
doi: 10.1093/eurheartj/ehv320
Reichlin, T. et al. Early diagnosis of myocardial infarction with sensitive cardiac troponin assays. N. Engl. J. Med. 361(9), 858–867 (2009).
doi: 10.1056/NEJMoa0900428
Walter, J. E. et al. Prospective validation of a biomarker-based rule out strategy for functionally relevant coronary artery disease. Clin. Chem. 64(2), 386–395 (2018).
doi: 10.1373/clinchem.2017.277210
Breidthardt, T. et al. How accurate is clinical assessment of neck veins in the estimation of central venous pressure in acute heart failure? Insights from a prospective study. Eur. J. Heart Fail. 20(7), 1160–1162 (2018).
doi: 10.1002/ejhf.1111
Nestelberger, T. et al. Characterization of the observe zone of the ESC 2015 high-sensitivity cardiac troponin 0h/1h-algorithm for the early diagnosis of acute myocardial infarction. Int. J. Cardiol. 207, 238–245 (2016).
doi: 10.1016/j.ijcard.2016.01.112
Castillo, E., Lima, J. A. & Bluemke, D. A. Regional myocardial function: advances in MR imaging and analysis. Radiographics 23 Spec No, S127–S140 (2003).
doi: 10.1148/rg.23si035512
Moore, C. C., McVeigh, E. R. & Zerhouni, E. A. Quantitative tagged magnetic resonance imaging of the normal human left ventricle. Top. Magn. Reson. Imaging 11(6), 359–371 (2000).
doi: 10.1097/00002142-200012000-00005
Osman, N. F., Sampath, S., Atalar, E. & Prince, J. L. Imaging longitudinal cardiac strain on short-axis images using strain-encoded MRI. Magn. Reson. Med. 46(2), 324–334 (2001).
doi: 10.1002/mrm.1195
Giusca, S. et al. Reproducibility study on myocardial strain assessment using fast-SENC cardiac magnetic resonance imaging. Sci. Rep. 8(1), 14100 (2018).
doi: 10.1038/s41598-018-32226-3
Oyama-Manabe, N. et al. Identification and further differentiation of subendocardial and transmural myocardial infarction by fast strain-encoded (SENC) magnetic resonance imaging at 3.0 Tesla. Eur. Radiol. 21(11), 2362–2368 (2011).
doi: 10.1007/s00330-011-2177-4
Riffel, J. H. et al. Feasibility of fast cardiovascular magnetic resonance strain imaging in patients presenting with acute chest pain. PLoS ONE 16(5), e0251040 (2021).
doi: 10.1371/journal.pone.0251040
Morales, M. A. et al. Hyperventilation-echocardiography test for the diagnosis of myocardial ischaemia at rest. Eur. Heart J. 14(8), 1088–1093 (1993).
doi: 10.1093/eurheartj/14.8.1088
Fischer, K., Guensch, D. P., Shie, N., Lebel, J. & Friedrich, M. G. Breathing maneuvers as a vasoactive stimulus for detecting inducible myocardial ischemia: An experimental cardiovascular magnetic resonance study. PLoS ONE 11(10), e0164524 (2016).
doi: 10.1371/journal.pone.0164524
Roubille, F., Fischer, K., Guensch, D. P., Tardif, J. C. & Friedrich, M. G. Impact of hyperventilation and apnea on myocardial oxygenation in patients with obstructive sleep apnea: An oxygenation-sensitive CMR study. J. Cardiol. 69(2), 489–494 (2017).
doi: 10.1016/j.jjcc.2016.03.011
Fischer, K., Guensch, D. P. & Friedrich, M. G. Response of myocardial oxygenation to breathing manoeuvres and adenosine infusion. Eur. Heart J. Cardiovasc. Imaging 16(4), 395–401 (2015).
doi: 10.1093/ehjci/jeu202
Fischer, K. et al. Feasibility of cardiovascular magnetic resonance to detect oxygenation deficits in patients with multi-vessel coronary artery disease triggered by breathing maneuvers. J. Cardiovasc. Magn. Reson. 20(1), 31 (2018).
doi: 10.1186/s12968-018-0446-y
Ochs, M. M., Kajzar, I., Salatzki, J., Ochs, A. T., Riffel, J., Osman, N., et al. Hyperventilation/breath-hold maneuver to detect myocardial ischemia by strain-encoded CMR. JACC Cardiovasc. Imaging.
Giannitsis, E. et al. Analytical validation of a high-sensitivity cardiac troponin T assay. Clin. Chem. 56(2), 254–261 (2010).
doi: 10.1373/clinchem.2009.132654
Neizel, M. et al. Strain-encoded (SENC) magnetic resonance imaging to evaluate regional heterogeneity of myocardial strain in healthy volunteers: Comparison with conventional tagging. J. Magn. Reson. Imaging 29(1), 99–105 (2009).
doi: 10.1002/jmri.21612
Cerqueira, M. D. et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105(4), 539–542 (2002).
doi: 10.1161/hc0402.102975
Hanley, J. A. & McNeil, B. J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1), 29–36 (1982).
doi: 10.1148/radiology.143.1.7063747
Reinhold, T. et al. Cost analysis of early discharge using combined copeptin/cardiac troponin testing versus serial cardiac troponin testing in patients with suspected acute coronary syndrome. PLoS ONE 13(8), e0202133 (2018).
doi: 10.1371/journal.pone.0202133
Rubini Gimenez, M. et al. One-hour rule-in and rule-out of acute myocardial infarction using high-sensitivity cardiac troponin I. Am. J. Med. 128(8), 861–70 e4 (2015).
doi: 10.1016/j.amjmed.2015.01.046
Jaeger, C. et al. One-hour rule-in and rule-out of acute myocardial infarction using high-sensitivity cardiac troponin I. Am. Heart J. 171(1), 92-102 e1–5 (2016).
doi: 10.1016/j.ahj.2015.07.022
Reichlin, T. et al. One-hour rule-out and rule-in of acute myocardial infarction using high-sensitivity cardiac troponin T. Arch. Intern. Med. 172(16), 1211–1218 (2012).
doi: 10.1001/archinternmed.2012.3698
Mueller, C. et al. Multicenter evaluation of a 0-hour/1-hour algorithm in the diagnosis of myocardial infarction with high-sensitivity cardiac troponin T. Ann. Emerg. Med. 68(1), 76-87 e4 (2016).
doi: 10.1016/j.annemergmed.2015.11.013
Ortiz-Pérez, J. T. et al. Correspondence between the 17-segment model and coronary arterial anatomy using contrast-enhanced cardiac magnetic resonance imaging. JACC Cardiovasc. Imaging 1(3), 282–293 (2008).
doi: 10.1016/j.jcmg.2008.01.014
Muser, D., Castro, S. A., Santangeli, P. & Nucifora, G. Clinical applications of feature-tracking cardiac magnetic resonance imaging. World J. Cardiol. 10(11), 210–221 (2018).
doi: 10.4330/wjc.v10.i11.210
Collet, J. P. et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 42, 1289–1367 (2020).
doi: 10.1093/eurheartj/ehaa575