Mechanisms of ultraviolet-induced melasma formation: A review.


Journal

The Journal of dermatology
ISSN: 1346-8138
Titre abrégé: J Dermatol
Pays: England
ID NLM: 7600545

Informations de publication

Date de publication:
Dec 2022
Historique:
revised: 03 07 2022
received: 15 05 2022
accepted: 26 07 2022
pubmed: 11 8 2022
medline: 7 12 2022
entrez: 10 8 2022
Statut: ppublish

Résumé

Melasma, a pigmentation disorder, commonly occurs in exposed skin areas and can be attributed to several factors. Ultraviolet radiation (UVR) is the primary factor that induces and aggravates melasma. Considering gene expression, exposed skin areas experience abnormal gene expression, involving melanin metabolism, oxidative stress, impaired skin barrier function, and abnormal composition of nerve factors. From a histological perspective, UVR can cause basement membrane collapse, melanocyte sinking, and disorders of skin lipid metabolism. Emerging therapies have focused on these pathological alterations in melasma, including platelet-rich plasma, mesotherapy, and phytochemicals. Understanding the role of UVR in the development of melasma can facilitate early prevention and highlight the future direction of melasma treatment.

Identifiants

pubmed: 35946331
doi: 10.1111/1346-8138.16542
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

1201-1210

Subventions

Organisme : The New Xiangya Talent Projects of the Third Xiangya Hospital of Central South University
ID : 20170309

Informations de copyright

© 2022 Japanese Dermatological Association.

Références

Passeron T, Picardo M. Melasma, a photoaging disorder. Pigment Cell Melanoma Res. 2018;31:461-5.
Pollo CF, Miot LDB, Meneguin S, Miot HA. Factors associated with quality of life in facial melasma: a cross-sectional study. Int J Cosmet Sci. 2018;40:313-6.
Freitag FM, Cestari TF, Leopoldo LR, Paludo P, Boza JC. Effect of melasma on quality of life in a sample of women living in southern Brazil. J Eur Acad Dermatol Venereol. 2008;22:655-62.
Lee AY. Recent progress in melasma pathogenesis. Pigment Cell Melanoma Res. 2015;28:648-60.
Sarkar R, Bansal A, Ailawadi P. Future therapies in melasma: what lies ahead? Indian J Dermatol Venereol Leprol. 2020;86:8-17.
Chung BY, Noh TK, Yang SH, Kim IH, Lee MW, Yoon TJ, et al. Gene expression profiling in melasma in Korean women. Dermatology. 2014;229:333-42.
Kang HY, Suzuki I, Lee DJ, Ha J, Reiniche P, Aubert J, et al. Transcriptional profiling shows altered expression of wnt pathway- and lipid metabolism-related genes as well as melanogenesis-related genes in melasma. J Invest Dermatol. 2011;131:1692-700.
Kwon SH, Hwang YJ, Lee SK, Park KC. Heterogeneous pathology of melasma and its clinical implications. Int J Mol Sci. 2016;17:824.
Rajanala S, Maymone MBC, Vashi NA. Melasma pathogenesis: a review of the latest research, pathological findings, and investigational therapies. Dermatol Online J. 2019;25:13030/qt47b7r28c.
Xu J, Lu H, Luo H, Hu Y, Chen Y, Xie B, et al. Tape stripping and lipidomics reveal skin surface lipid abnormity in female melasma. Pigment Cell Melanoma Res. 2021;34:1105-11.
Cui R, Widlund HR, Feige E, Lin JY, Wilensky DL, Igras VE, et al. Central role of p53 in the suntan response and pathologic hyperpigmentation. Cell. 2007;128:853-64.
Moro O, Ideta R, Ifuku O. Characterization of the promoter region of the human melanocortin-1 receptor (MC1R) gene. Biochem Biophys Res Commun. 1999;262:452-60.
Garcia-Borron JC, Abdel-Malek Z, Jimenez-Cervantes C. MC1R, the cAMP pathway, and the response to solar UV: extending the horizon beyond pigmentation. Pigment Cell Melanoma Res. 2014;27:699-720.
Tagashira H, Miyamoto A, Kitamura S, Tsubata M, Yamaguchi K, Takagaki K, et al. UVB stimulates the expression of endothelin B receptor in human melanocytes via a sequential activation of the p38/MSK1/CREB/MITF pathway which can be interrupted by a French maritime pine bark extract through a direct inactivation of MSK1. PLoS One. 2015;10:e0128678.
Jung JM, Noh TK, Jo SY, Kim SY, Song Y, Kim YH, et al. Guanine deaminase in human epidermal keratinocytes contributes to skin pigmentation. Molecules. 2020;25:2637.
Cheong KA, Lee AY. Guanine deaminase stimulates ultraviolet-induced keratinocyte senescence in seborrhoeic keratosis via guanine metabolites. Acta Derm Venereol. 2020;100:adv00109.
Pei S, Huang J, Chen J, Hu S, Lei L, Fu C, et al. UVB-inhibited H19 activates melanogenesis by paracrine effects. Exp Dermatol. 2018;27:1120-5.
Lee YR, Noh EM, Jeong EY, Yun SK, Jeong YJ, Kim JH, et al. Cordycepin inhibits UVB-induced matrix metalloproteinase expression by suppressing the NF-kappaB pathway in human dermal fibroblasts. Exp Mol Med. 2009;41:548-54.
Kim JK, Mun S, Kim MS, Kim MB, Sa BK, Hwang JK. 5,7-dimethoxyflavone, an activator of PPARalpha/gamma, inhibits UVB-induced MMP expression in human skin fibroblast cells. Exp Dermatol. 2012;21:211-6.
Wen KC, Shih IC, Hu JC, Liao ST, Su TW, Chiang HM. Inhibitory effects of Terminalia catappa on UVB-induced photodamage in fibroblast cell line. Evid Based Complement Alternat Med. 2011;2011:904532.
Li K, Zhang M, Chen H, Peng J, Jiang F, Shi X, et al. Anthocyanins from black peanut skin protect against UV-B induced keratinocyte cell and skin oxidative damage through activating Nrf 2 signaling. Food Funct. 2019;10:6815-28.
Chaiprasongsuk A, Onkoksoong T, Pluemsamran T, Limsaengurai S, Panich U. Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses. Redox Biol. 2016;8:79-90.
Wang Y, Hao M-M, Sun Y, Wang LF, Wang H, Zhang YJ, et al. Synergistic promotion on tyrosinase inhibition by antioxidants. Molecules. 2018;23:106.
Park TJ, Kim M, Kim H, Park SY, Park KC, Ortonne JP, et al. Wnt inhibitory factor (WIF)-1 promotes melanogenesis in normal human melanocytes. Pigment Cell Melanoma Res. 2014;27:72-81.
WangHui TL, Qianqiu W. Effects of broadband ultraviolet B on non-canonical Wnt pathways in hur man epidermal melanocytes. Chin J Dermatol. 2015;48:692-6.
Suryaningsih BE, Sadewa AH, Wirohadidjojo YW, Soebono H. Association between heterozygote Val92Met MC1R gene polymorphisms with incidence of melasma: a study of Javanese women population in Yogyakarta. Clin Cosmet Investig Dermatol. 2019;12:489-95.
Esposito ACC, Brianezi G, de Souza NP, Jorge MFS, D'Elia MPB, Miot HA. Exploring pathways for sustained melanogenesis in facial melasma: an immunofluorescence study. Int J Cosmet Sci. 2018;40:420-4.
Liu F, Hamer MA, Deelen J, Lall JS, Jacobs L, van Heemst D, et al. The MC1R gene and Youthful looks. Curr Biol. 2016;26:1213-20.
Herraiz C, Garcia-Borron JC, Jimenez-Cervantes C, Olivares C. MC1R signaling. Intracellular partners and pathophysiological implications. Biochim Biophys Acta Mol Basis Dis. 2017;1863(10 Pt A):2448-61.
Espinasa L, Robinson J, Espinasa M. Mc1r gene in Astroblepus pholeter and Astyanax mexicanus: convergent regressive evolution of pigmentation across cavefish species. Dev Biol. 2018;441:305-10.
Guida S, Ciardo S, De Pace B, De Carvalho N, Farnetani F, Pezzini C, et al. Atrophic and hypertrophic skin photoaging and melanocortin-1 receptor (MC1R): the missing link. J Am Acad Dermatol. 2021;84:187-90.
Galibert MD, Carreira S, Goding CR. The Usf-1 transcription factor is a novel target for the stress-responsive p38 kinase and mediates UV-induced tyrosinase expression. EMBO J. 2001;20:5022-31.
Bak H, Lee HJ, Chang SE, Choi JH, Kim MN, Kim BJ. Increased expression of nerve growth factor receptor and neural endopeptidase in the lesional skin of melasma. Dermatol Surg. 2009;35:1244-50.
Akum BF, Chen M, Gunderson SI, Riefler GM, Scerri-Hansen MM, Firestein BL. Cypin regulates dendrite patterning in hippocampal neurons by promoting microtubule assembly. Nat Neurosci. 2004;7:145-52.
Gabory A, Ripoche MA, Yoshimizu T, Dandolo L. The H19 gene: regulation and function of a non-coding RNA. Cytogenet Genome Res. 2006;113:188-93.
Wang J, Su Z, Lu S, Fu W, Liu Z, Jiang X, et al. LncRNA HOXA-AS2 and its molecular mechanisms in human cancer. Clin Chim Acta. 2018;485:229-33.
Kim NH, Lee CH, Lee AY. H19 RNA downregulation stimulated melanogenesis in melasma. Pigment Cell Melanoma Res. 2010;23:84-92.
Kim NH, Choi SH, Kim CH, Lee CH, Lee TR, Lee AY. Reduced MiR-675 in exosome in H19 RNA-related melanogenesis via MITF as a direct target. J Invest Dermatol. 2014;134:1075-82.
Kim B, Kim JE, Kim HS. Caffeic acid induces keratinocyte differentiation by activation of PPAR-alpha. J Pharm Pharmacol. 2014;66:84-92.
Lee DJ, Lee J, Ha J, Park KC, Ortonne JP, Kang HY. Defective barrier function in melasma skin. J Eur Acad Dermatol Venereol. 2012;26:1533-7.
Flori E, Mastrofrancesco A, Kovacs D, Ramot Y, Briganti S, Bellei B, et al. 2,4,6-Octatrienoic acid is a novel promoter of melanogenesis and antioxidant defence in normal human melanocytes via PPAR-gamma activation. Pigment Cell Melanoma Res. 2011;24:618-30.
Flori E, Mastrofrancesco A, Kovacs D, Bellei B, Briganti S, Maresca V, et al. The activation of PPARgamma by 2,4,6-Octatrienoic acid protects human keratinocytes from UVR-induced damages. Sci Rep. 2017;7:9241.
Kim EJ, Jin XJ, Kim YK, Oh IK, Kim JE, Park CH, et al. UV decreases the synthesis of free fatty acids and triglycerides in the epidermis of human skin in vivo, contributing to development of skin photoaging. J Dermatol Sci. 2010;57:19-26.
Choubey V, Sarkar R, Garg V, Kaushik S, Ghunawat S, Sonthalia S. Role of oxidative stress in melasma: a prospective study on serum and blood markers of oxidative stress in melasma patients. Int J Dermatol. 2017;56:939-43.
Sarkar R, Devadasan S, Choubey V, Goswami B. Melatonin and oxidative stress in melasma - an unexplored territory; a prospective study. Int J Dermatol. 2020;59:572-5.
Zhang K, Chen D, Ma K, Wu X, Hao H, Jiang S. NAD(P)H:Quinone Oxidoreductase 1 (NQO1) as a therapeutic and diagnostic target in cancer. J Med Chem. 2018;61:6983-7003.
Lin LC, Lee HT, Chien PJ, Huang YH, Chang MY, Lee YC, et al. NAD(P)H:quinone oxidoreductase 1 determines radiosensitivity of triple negative breast cancer cells and is controlled by long non-coding RNA NEAT1. Int J Med Sci. 2020;17:2214-24.
Choi TY, Sohn KC, Kim JH, Huang YH, Chang MY, Lee YC, et al. Impact of NAD(P)H:quinone oxidoreductase-1 on pigmentation. J Invest Dermatol. 2010;130:784-92.
Shaw P, Chattopadhyay A. Nrf2-ARE signaling in cellular protection: mechanism of action and the regulatory mechanisms. J Cell Physiol. 2019;235:3119-30.
Pillaiyar T, Manickam M, Jung SH. Downregulation of melanogenesis: drug discovery and therapeutic options. Drug Discov Today. 2017;22:282-98.
Tang Q, Zhao H, Yang B, Li L, Shi Q, Jiang C, et al. WIF-1 gene inhibition and Wnt signal transduction pathway activation in NSCLC tumorigenesis. Oncol Lett. 2017;13:1183-8.
Kim JY, Lee TR, Lee AY. Reduced WIF-1 expression stimulates skin hyperpigmentation in patients with melasma. J Invest Dermatol. 2013;133:191-200.
Costin GE, Hearing VJ. Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J. 2007;21:976-94.
Rodriguez CI, Setaluri V. Cyclic AMP (cAMP) signaling in melanocytes and melanoma. Arch Biochem Biophys. 2014;563:22-7.
Imokawa G, Ishida K. Inhibitors of intracellular signaling pathways that lead to stimulated epidermal pigmentation: perspective of anti-pigmenting agents. Int J Mol Sci. 2014;15:8293-315.
Imokawa G, Miyagishi M, Yada Y. Endothelin-1 as a new melanogen: coordinated expression of its gene and the tyrosinase gene in UVB-exposed human epidermis. J Invest Dermatol. 1995;105:32-7.
Schauer E, Trautinger F, Kock A, Schwarz A, Bhardwaj R, Simon M, et al. Proopiomelanocortin-derived peptides are synthesized and released by human keratinocytes. J Clin Invest. 1994;93:2258-62.
Wang Y, Viennet C, Robin S, Berthon JY, He L, Humbert P. Precise role of dermal fibroblasts on melanocyte pigmentation. J Dermatol Sci. 2017;88:159-66.
Enomoto A, Yoshihisa Y, Yamakoshi T, Ur Rehman M, Norisugi O, Hara H, et al. UV-B radiation induces macrophage migration inhibitory factor-mediated melanogenesis through activation of protease-activated receptor-2 and stem cell factor in keratinocytes. Am J Pathol. 2011;178:679-87.
Inomata S, Matsunaga Y, Amano S, Takada K, Kobayashi K, Tsunenaga M, et al. Possible involvement of gelatinases in basement membrane damage and wrinkle formation in chronically ultraviolet B-exposed hairless mouse. J Invest Dermatol. 2003;120:128-34.
Lee DJ, Park KC, Ortonne JP, Kang HY. Pendulous melanocytes: a characteristic feature of melasma and how it may occur. Br J Dermatol. 2012;166:684-6.
Esposito ACC, Brianezi G, de Souza NP, Santos DC, Miot LDB, Miot HA. Ultrastructural characterization of damage in the basement membrane of facial melasma. Arch Dermatol Res. 2020;312:223-7.
Esposito ACC, Brianezi G, de Souza NP, Miot LDB, Miot HA. Exploratory study of epidermis, basement membrane zone, upper dermis alterations and Wnt pathway activation in melasma compared to adjacent and retroauricular skin. Ann Dermatol. 2020;32:101-8.
Gray GM, Yardley HJ. Lipid compositions of cells isolated from pig, human, and rat epidermis. J Lipid Res. 1975;16:434-40.
Gao YL, Jia XX, Wang M, Hua Y, Zheng H, Xiang WZ, et al. Melanocyte activation and skin barrier disruption induced in melasma patients after 1064 nm Nd:YAG laser treatment. Lasers Med Sci. 2019;34:767-71.
Kompaore F, Marty JP, Dupont C. In vivo evaluation of the stratum corneum barrier function in blacks, Caucasians and Asians with two noninvasive methods. Skin Pharmacol. 1993;6:200-7.
Olivier E, Dutot M, Regazzetti A, Dargère D, Auzeil N, Laprévote O, et al. Lipid deregulation in UV irradiated skin cells: role of 25-hydroxycholesterol in keratinocyte differentiation during photoaging. J Steroid Biochem Mol Biol. 2017;169:189-97.
Hofny ERM, Hussein MRA, Ghazally A, Ahmed AM, Abdel-Motaleb AA. Increased expression of TGF-beta protein in the lesional skins of melasma patients following treatment with platelet-rich plasma. J Cosmet Laser Ther. 2019;21:382-9.
Sarkar R, Gupta M. Platelet-rich plasma in melasma-a systematic review. Dermatol Surg. 2022;48:131-4.
Sirithanabadeekul P, Dannarongchai A, Suwanchinda A. Platelet-rich plasma treatment for melasma: a pilot study. J Cosmet Dermatol. 2020;19:1321-7.
Deglesne PA, Arroyo R, Ranneva E, Deprez P. In vitro study of RRS HA injectable mesotherapy/biorevitalization product on human skin fibroblasts and its clinical utilization. Clin Cosmet Investig Dermatol. 2016;9:41-53.
El-Komy M, Hassan A, Tawdy A, Solimon M, Hady MA. Hair loss at injection sites of mesotherapy for alopecia. J Cosmet Dermatol. 2017;16:e28-30.
Khalili M, Amiri R, Iranmanesh B, Zartab H, Aflatoonian M. Safety and efficacy of mesotherapy in the treatment of melasma: a review article. J Cosmet Dermatol. 2022;21:118-29.
Mekawy KMM, Sadek A, Seddeik Abdel-Hameed AK. Micro-needling versus fractional carbon dioxide laser for delivery of tranexamic acid in the treatment of melasma: a split-face study. J Cosmet Dermatol. 2021;20:460-5.
Lima EVA, Lima M, Paixão MP, Miot HA. Assessment of the effects of skin microneedling as adjuvant therapy for facial melasma: a pilot study. BMC Dermatol. 2017;17:14.
Fisk WA, Agbai O, Lev-Tov HA, Sivamani RK. The use of botanically derived agents for hyperpigmentation: a systematic review. J Am Acad Dermatol. 2014;70:352-65.
Pietta PG. Flavonoids as antioxidants. J Nat Prod. 2000;63:1035-42.
El-Nashar HAS, El-Din MIG, Hritcu L, Eldahshan OA. Insights on the inhibitory power of flavonoids on tyrosinase activity: a survey from 2016 to 2021. Molecules. 2021;26:7546.
Djedjibegovic J, Marjanovic A, Panieri E, Saso L. Ellagic acid-derived urolithins as modulators of oxidative stress. Oxid Med Cell Longev. 2020;2020:5194508.
Ertam I, Mutlu B, Unal I, Alper S, Kivçak B, Ozer O. Efficiency of ellagic acid and arbutin in melasma: a randomized, prospective, open-label study. J Dermatol. 2008;35:570-4.
Imokawa G. Melanocyte activation mechanisms and rational therapeutic treatments of solar lentigos. Int J Mol Sci. 2019;20:3666.
Khan AQ, Travers JB, Kemp MG. Roles of UVA radiation and DNA damage responses in melanoma pathogenesis. Environ Mol Mutagen. 2018;59:438-60.
Fatima S, Braunberger T, Mohammad TF, Kohli I, Hamzavi IH. The role of sunscreen in melasma and Postinflammatory hyperpigmentation. Indian J Dermatol. 2020;65:5-10.

Auteurs

Jian Yang (J)

The Third Xiangya Hospital, Central South University, Changsha, China.

Jinrong Zeng (J)

The Third Xiangya Hospital, Central South University, Changsha, China.

Jianyun Lu (J)

The Third Xiangya Hospital, Central South University, Changsha, China.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH