Digital computing through randomness and order in neural networks.
catastrophic forgetting
continual learning
digital computing
maximum entropy
sparse coding
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
16 08 2022
16 08 2022
Historique:
entrez:
10
8
2022
pubmed:
11
8
2022
medline:
13
8
2022
Statut:
ppublish
Résumé
We propose that coding and decoding in the brain are achieved through digital computation using three principles: relative ordinal coding of inputs, random connections between neurons, and belief voting. Due to randomization and despite the coarseness of the relative codes, we show that these principles are sufficient for coding and decoding sequences with error-free reconstruction. In particular, the number of neurons needed grows linearly with the size of the input repertoire growing exponentially. We illustrate our model by reconstructing sequences with repertoires on the order of a billion items. From this, we derive the Shannon equations for the capacity limit to learn and transfer information in the neural population, which is then generalized to any type of neural network. Following the maximum entropy principle of efficient coding, we show that random connections serve to decorrelate redundant information in incoming signals, creating more compact codes for neurons and therefore, conveying a larger amount of information. Henceforth, despite the unreliability of the relative codes, few neurons become necessary to discriminate the original signal without error. Finally, we discuss the significance of this digital computation model regarding neurobiological findings in the brain and more generally with artificial intelligence algorithms, with a view toward a neural information theory and the design of digital neural networks.
Identifiants
pubmed: 35947616
doi: 10.1073/pnas.2115335119
pmc: PMC9388095
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2115335119Références
Front Syst Neurosci. 2014 Nov 25;8:223
pubmed: 25505390
Cortex. 2019 Oct;119:89-99
pubmed: 31091486
Cereb Cortex. 2004 Aug;14(8):933-44
pubmed: 15142958
Cell Rep. 2019 Aug 13;28(7):1649-1658.e6
pubmed: 31412236
Neurosci Biobehav Rev. 2016 Sep;68:862-879
pubmed: 27375276
Biol Cybern. 1992;68(1):23-9
pubmed: 1486129
Vision Res. 1997 Dec;37(23):3311-25
pubmed: 9425546
Hippocampus. 2013 Mar;23(3):207-12
pubmed: 23389924
Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14529-34
pubmed: 9826734
PLoS Comput Biol. 2021 Feb 18;17(2):e1008566
pubmed: 33600482
Neural Netw. 2020 Jan;121:242-258
pubmed: 31581065
Nat Neurosci. 2000 Nov;3 Suppl:1178-83
pubmed: 11127835
Psychol Rev. 1995 Jul;102(3):419-457
pubmed: 7624455
Ann N Y Acad Sci. 2014 May;1316:87-104
pubmed: 24697242
Prog Brain Res. 2005;150:45-53
pubmed: 16186014
J Neurophysiol. 2004 Jan;91(1):555-60
pubmed: 12968014
Neuron. 2011 Apr 28;70(2):200-27
pubmed: 21521609
Cogn Process. 2016 Aug;17(3):279-305
pubmed: 27118562
PLoS Comput Biol. 2016 Jun 10;12(6):e1004967
pubmed: 27286251
Biol Bull. 2008 Dec;215(3):216-42
pubmed: 19098144
Z Naturforsch C Biosci. 1981 Sep-Oct;36(9-10):910-2
pubmed: 7303823
Neural Netw. 2021 Nov;143:638-656
pubmed: 34343777
Neuropsychologia. 2019 Feb 4;123:5-18
pubmed: 30268880
Science. 2017 Nov 10;358(6364):793-796
pubmed: 29123069
Science. 2003 Sep 26;301(5641):1870-4
pubmed: 14512617
PLoS Comput Biol. 2009 Aug;5(8):e1000462
pubmed: 19680424
J Neurosci. 1998 Dec 15;18(24):10464-72
pubmed: 9852584
Vision Res. 2002 Oct;42(23):2593-615
pubmed: 12446033
Nat Rev Neurosci. 2006 May;7(5):358-66
pubmed: 16760916
Neural Netw. 2001 Jul-Sep;14(6-7):715-25
pubmed: 11665765
Trends Cogn Sci. 2007 Jun;11(6):229-35
pubmed: 17475536
Curr Opin Neurobiol. 2004 Aug;14(4):481-7
pubmed: 15321069
Neuron. 2008 Dec 26;60(6):1142-52
pubmed: 19109917
PLoS Comput Biol. 2019 Feb 7;15(2):e1006807
pubmed: 30730907
J Neurosci. 2007 Aug 8;27(32):8636-42
pubmed: 17687041
Nat Neurosci. 1999 Jan;2(1):79-87
pubmed: 10195184
Philos Trans R Soc Lond B Biol Sci. 2009 May 12;364(1521):1211-21
pubmed: 19528002
Neurosci Conscious. 2019 Nov 29;2019(1):niz016
pubmed: 31798969
J Neurosci. 1995 Jan;15(1 Pt 1):359-75
pubmed: 7823141
Nat Neurosci. 2017 Dec;20(12):1770-1779
pubmed: 29184197
Network. 2001 Aug;12(3):241-53
pubmed: 11563528
Curr Opin Neurobiol. 2016 Apr;37:66-74
pubmed: 26851755
Front Hum Neurosci. 2009 Nov 09;3:31
pubmed: 19915731
Prog Neurobiol. 2011 Nov;95(3):448-90
pubmed: 21907758
Trends Cogn Sci. 2009 Jul;13(7):293-301
pubmed: 19559644
Trends Cogn Sci. 1999 Apr;3(4):128-135
pubmed: 10322466
PLoS Comput Biol. 2010 Apr 29;6(4):e1000765
pubmed: 20442869
Front Neurorobot. 2022 May 23;16:845955
pubmed: 35686118
Nature. 2013 May 30;497(7451):585-90
pubmed: 23685452
Neuron. 2011 Feb 24;69(4):818-31
pubmed: 21338889
Nat Neurosci. 2013 Sep;16(9):1170-8
pubmed: 23955561
Neurobiol Learn Mem. 2016 Mar;129:4-28
pubmed: 26190832
Prog Neurobiol. 2021 Apr;199:101918
pubmed: 33039416
PLoS One. 2017 Mar 10;12(3):e0173684
pubmed: 28282439
Nature. 1996 Jun 13;381(6583):607-9
pubmed: 8637596
Nature. 2016 Oct 27;538(7626):471-476
pubmed: 27732574
Neuron. 2009 Jul 30;63(2):254-66
pubmed: 19640483
Nat Neurosci. 2000 Sep;3(9):919-26
pubmed: 10966623
Proc Natl Acad Sci U S A. 2022 Aug 16;119(33):e2115335119
pubmed: 35947616
Cell. 2019 Jul 25;178(3):640-652.e14
pubmed: 31280961
Neuron. 2015 Oct 7;88(1):2-19
pubmed: 26447569
Exp Brain Res. 1989;78(3):447-64
pubmed: 2612591
Nature. 2007 Jan 18;445(7125):315-8
pubmed: 17183266
J Neurosci. 2018 May 23;38(21):4912-4933
pubmed: 29712786
J Neurosci. 2017 Jan 25;37(4):854-870
pubmed: 28123021