Using individual participant data to improve network meta-analysis projects.


Journal

BMJ evidence-based medicine
ISSN: 2515-4478
Titre abrégé: BMJ Evid Based Med
Pays: England
ID NLM: 101719009

Informations de publication

Date de publication:
06 2023
Historique:
accepted: 01 07 2022
medline: 24 5 2023
pubmed: 11 8 2022
entrez: 10 8 2022
Statut: ppublish

Résumé

A network meta-analysis combines the evidence from existing randomised trials about the comparative efficacy of multiple treatments. It allows direct and indirect evidence about each comparison to be included in the same analysis, and provides a coherent framework to compare and rank treatments. A traditional network meta-analysis uses aggregate data (eg, treatment effect estimates and standard errors) obtained from publications or trial investigators. An alternative approach is to obtain, check, harmonise and meta-analyse the individual participant data (IPD) from each trial. In this article, we describe potential advantages of IPD for network meta-analysis projects, emphasising five key benefits: (1) improving the quality and scope of information available for inclusion in the meta-analysis, (2) examining and plotting distributions of covariates across trials (eg, for potential effect modifiers), (3) standardising and improving the analysis of each trial, (4) adjusting for prognostic factors to allow a network meta-analysis of conditional treatment effects and (5) including treatment-covariate interactions (effect modifiers) to allow relative treatment effects to vary by participant-level covariate values (eg, age, baseline depression score). A running theme of all these benefits is that they help examine and reduce heterogeneity (differences in the true treatment effect between trials) and inconsistency (differences in the true treatment effect between direct and indirect evidence) in the network. As a consequence, an IPD network meta-analysis has the potential for more precise, reliable and informative results for clinical practice and even allows treatment comparisons to be made for individual patients and targeted populations conditional on their particular characteristics.

Identifiants

pubmed: 35948411
pii: bmjebm-2022-111931
doi: 10.1136/bmjebm-2022-111931
pmc: PMC10313959
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

197-203

Subventions

Organisme : Medical Research Council
ID : MC_UU_00004/06
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/P015298/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/R025223/1
Pays : United Kingdom

Informations de copyright

© Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY. Published by BMJ.

Déclaration de conflit d'intérêts

Competing interests: None declared.

Références

BMC Med. 2014 Jun 05;12:93
pubmed: 24898705
BMJ. 2011 Aug 16;343:d4909
pubmed: 21846695
Stat Med. 2012 Dec 20;31(29):3821-39
pubmed: 22807043
Biostatistics. 2009 Oct;10(4):792-805
pubmed: 19687150
Res Synth Methods. 2012 Jun;3(2):80-97
pubmed: 26062083
PLoS Med. 2015 Jul 21;12(7):e1001855
pubmed: 26196287
Value Health. 2014 Mar;17(2):157-73
pubmed: 24636374
BMJ. 2013 Apr 22;346:f1798
pubmed: 23610376
BMJ. 2017 Sep 13;358:j3932
pubmed: 28903924
Med Decis Making. 2013 Aug;33(6):743-54
pubmed: 23341049
Depress Anxiety. 2021 Nov;38(11):1152-1168
pubmed: 34312952
Crit Care Med. 2009 Oct;37(10):2683-90
pubmed: 19885979
Stat Med. 2014 Sep 28;33(22):3844-58
pubmed: 24789760
Neurotherapeutics. 2010 Jan;7(1):127-34
pubmed: 20129504
BMC Med Res Methodol. 2011 May 06;11:61
pubmed: 21548941
PLoS Med. 2020 Jan 31;17(1):e1003019
pubmed: 32004320
BMJ. 2012 Jan 03;344:d7762
pubmed: 22214758
BMJ. 2017 Mar 3;356:j573
pubmed: 28258124
Stat Methods Med Res. 2018 May;27(5):1351-1364
pubmed: 27487843
Stat Med. 2012 Feb 20;31(4):328-40
pubmed: 22139891
BMC Med Res Methodol. 2021 Jan 13;21(1):21
pubmed: 33435879
Syst Rev. 2019 Apr 15;8(1):96
pubmed: 30987679
Eval Health Prof. 2002 Mar;25(1):76-97
pubmed: 11868447
Lancet. 2011 Oct 8;378(9799):1306-15
pubmed: 21851976
Stat Med. 1995 Oct 15;14(19):2057-79
pubmed: 8552887
Ann Intern Med. 2013 Jul 16;159(2):130-7
pubmed: 23856683
JAMA Psychiatry. 2021 Apr 1;78(4):361-371
pubmed: 33471111
BMC Med. 2013 Jul 04;11:159
pubmed: 23826681
Stat Med. 2021 Mar 15;40(6):1553-1573
pubmed: 33368415
Stat Med. 2021 Nov 20;40(26):5961-5981
pubmed: 34402094
BMC Med Res Methodol. 2015 Apr 12;15:34
pubmed: 25887646
Stat Med. 2012 Dec 20;31(29):3840-57
pubmed: 22786621
Stat Med. 2022 Jan 30;41(2):340-355
pubmed: 34710951
Stat Med. 2015 Sep 10;34(20):2794-819
pubmed: 25924975
Biostatistics. 2015 Jan;16(1):84-97
pubmed: 24992934
J R Stat Soc Ser A Stat Soc. 2020 Jun;183(3):1189-1210
pubmed: 32684669
Stat Med. 2020 Jul 10;39(15):2115-2137
pubmed: 32350891
Res Synth Methods. 2018 Sep;9(3):441-469
pubmed: 29923679
J Clin Epidemiol. 2004 May;57(5):454-60
pubmed: 15196615
Res Synth Methods. 2018 Jun;9(2):243-260
pubmed: 29377598
Stat Med. 2013 Mar 15;32(6):914-30
pubmed: 22987606
Ann Epidemiol. 2006 Jan;16(1):41-8
pubmed: 16275011
J Clin Epidemiol. 2017 Jun;86:182-195
pubmed: 28344122
Res Synth Methods. 2017 Dec;8(4):451-464
pubmed: 28742955

Auteurs

Richard D Riley (RD)

School of Medicine, Keele University, Keele, UK r.riley@keele.ac.uk.

Sofia Dias (S)

Centre for Reviews and Dissemination, University of York, York, UK.

Sarah Donegan (S)

Department of Health Data Science, University of Liverpool, Liverpool, UK.

Jayne F Tierney (JF)

MRC Clinical Trials Unit at UCL, UCL, London, UK.

Lesley A Stewart (LA)

Centre for Reviews and Dissemination, University of York, York, UK.

Orestis Efthimiou (O)

Institute of Social and Preventive Medicine (ISPMU), University of Bern, Bern, Switzerland.

David M Phillippo (DM)

Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH