Spatial multi-omic map of human myocardial infarction.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
08 2022
Historique:
received: 30 11 2020
accepted: 29 06 2022
pubmed: 11 8 2022
medline: 27 8 2022
entrez: 10 8 2022
Statut: ppublish

Résumé

Myocardial infarction is a leading cause of death worldwide

Identifiants

pubmed: 35948637
doi: 10.1038/s41586-022-05060-x
pii: 10.1038/s41586-022-05060-x
pmc: PMC9364862
doi:

Substances chimiques

Chromatin 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

766-777

Subventions

Organisme : NHLBI NIH HHS
ID : R35 HL161185
Pays : United States
Organisme : European Research Council
ID : ERC-STG 677448
Pays : International
Organisme : European Research Council
ID : ERC-COG 101043403
Pays : International
Organisme : European Research Council
ID : ERC-STG 101040726
Pays : International

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Wong, N. D. Epidemiological studies of CHD and the evolution of preventive cardiology. Nat. Rev. Cardiol. 11, 276–289 (2014).
pubmed: 24663092 doi: 10.1038/nrcardio.2014.26
Niccoli, G. et al. Optimized treatment of ST-elevation myocardial infarction. Circ. Res. 125, 245–258 (2019).
pubmed: 31268854 doi: 10.1161/CIRCRESAHA.119.315344
Prabhu Sumanth, D. & Frangogiannis Nikolaos, G. The biological basis for cardiac repair after myocardial infarction. Circ. Res. 119, 91–112 (2016).
pubmed: 27340270 pmcid: 4922528 doi: 10.1161/CIRCRESAHA.116.303577
Litviňuková, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).
pubmed: 32971526 pmcid: 7681775 doi: 10.1038/s41586-020-2797-4
Wang, L. et al. Single-cell reconstruction of the adult human heart during heart failure and recovery reveals the cellular landscape underlying cardiac function. Nat. Cell Biol. 22, 108–119 (2020).
pubmed: 31915373 doi: 10.1038/s41556-019-0446-7
Tucker, N. R. et al. Transcriptional and cellular diversity of the human heart. Circulation 142, 466–482 (2020).
pubmed: 32403949 pmcid: 7666104 doi: 10.1161/CIRCULATIONAHA.119.045401
Dodou, E., Verzi, M. P., Anderson, J. P., Xu, S.-M. & Black, B. L. Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development. Development 131, 3931–3942 (2004).
pubmed: 15253934 doi: 10.1242/dev.01256
Yan, C., Zhu, M., Staiger, J., Johnson, P. F. & Gao, H. C5a-regulated CCAAT/enhancer-binding proteins β and δ are essential in Fcγ receptor-mediated inflammatory cytokine and chemokine production in macrophages. J. Biol. Chem. 287, 3217–3230 (2012).
pubmed: 22147692 doi: 10.1074/jbc.M111.280834
Kovary, K. & Bravo, R. The jun and fos protein families are both required for cell cycle progression in fibroblasts. Mol. Cell. Biol. 11, 4466–4472 (1991).
pubmed: 1908553 pmcid: 361310
Li, S., Wang, D.-Z., Wang, Z., Richardson, J. A. & Olson, E. N. The serum response factor coactivator myocardin is required for vascular smooth muscle development. Proc. Natl Acad. Sci. USA 100, 9366–9370 (2003).
pubmed: 12867591 pmcid: 170924 doi: 10.1073/pnas.1233635100
Ge, Y. et al. Switching macrophage gene expression from inflammation-resolution to hemorrhage-resolution by redirection of activating transcription factor 1 (ATF1) binding by SMARCA4, BACH1 and histone H3K9 acetylation. Atherosclerosis 315, e2 (2020).
doi: 10.1016/j.atherosclerosis.2020.10.021
Pirruccello, J. P. et al. Analysis of cardiac magnetic resonance imaging in 36,000 individuals yields genetic insights into dilated cardiomyopathy. Nat. Commun. 11, 2254 (2020).
pubmed: 32382064 pmcid: 7206184 doi: 10.1038/s41467-020-15823-7
Ruetten, H., Dimmeler, S., Gehring, D., Ihling, C. & Zeiher, A. M. Concentric left ventricular remodeling in endothelial nitric oxide synthase knockout mice by chronic pressure overload. Cardiovasc. Res. 66, 444–453 (2005).
pubmed: 15914109 doi: 10.1016/j.cardiores.2005.01.021
Shook, B. A. et al. Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair. Science 362, eaar2971 (2018).
pubmed: 30467144 pmcid: 6684198 doi: 10.1126/science.aar2971
Pakshir, P. et al. Dynamic fibroblast contractions attract remote macrophages in fibrillar collagen matrix. Nat. Commun. 10, 1850 (2019).
pubmed: 31015429 pmcid: 6478854 doi: 10.1038/s41467-019-09709-6
Aoyagi, T. & Matsui, T. Phosphoinositide-3 kinase signaling in cardiac hypertrophy and heart failure. Curr. Pharm. Des. 17, 1818–1824 (2011).
pubmed: 21631421 pmcid: 3337715 doi: 10.2174/138161211796390976
Mak, T. W., Hauck, L., Grothe, D. & Billia, F. p53 regulates the cardiac transcriptome. Proc. Natl Acad. Sci. USA 114, 2331–2336 (2017).
pubmed: 28193895 pmcid: 5338492 doi: 10.1073/pnas.1621436114
Bergmann, M. W. WNT signaling in adult cardiac hypertrophy and remodeling: lessons learned from cardiac development. Circ. Res. 107, 1198–1208 (2010).
pubmed: 21071717 doi: 10.1161/CIRCRESAHA.110.223768
Ahern, B. M. et al. Myocardial-restricted ablation of the GTPase RAD results in a pro-adaptive heart response in mice. J. Biol. Chem. 294, 10913–10927 (2019).
pubmed: 31147441 pmcid: 6635439 doi: 10.1074/jbc.RA119.008782
Lotteau, S. et al. Acute genetic ablation of cardiac sodium/calcium exchange in adult mice: implications for cardiomyocyte calcium regulation, cardioprotection, and arrhythmia. J. Am. Heart Assoc. 10, e019273 (2021).
pubmed: 34472363 pmcid: 8649274 doi: 10.1161/JAHA.120.019273
Fernandez-Caggiano, M. et al. Mitochondrial pyruvate carrier abundance mediates pathological cardiac hypertrophy. Nat. Metab. 2, 1223–1231 (2020).
pubmed: 33106688 pmcid: 7610404 doi: 10.1038/s42255-020-00276-5
Hama, N. et al. Rapid ventricular induction of brain natriuretic peptide gene expression in experimental acute myocardial infarction. Circulation 92, 1558–1564 (1995).
pubmed: 7664440 doi: 10.1161/01.CIR.92.6.1558
Waspe, L. E., Ordahl, C. P. & Simpson, P. C. The cardiac β-myosin heavy chain isogene is induced selectively in α1-adrenergic receptor-stimulated hypertrophy of cultured rat heart myocytes. J. Clin. Invest. 85, 1206–1214 (1990).
pubmed: 2156896 pmcid: 296553 doi: 10.1172/JCI114554
Beggah, A. T. et al. Reversible cardiac fibrosis and heart failure induced by conditional expression of an antisense mRNA of the mineralocorticoid receptor in cardiomyocytes. Proc. Natl Acad. Sci. USA 99, 7160–7165 (2002).
pubmed: 11997477 pmcid: 124545 doi: 10.1073/pnas.102673599
Bakker, M. L. et al. T-box transcription factor TBX3 reprogrammes mature cardiac myocytes into pacemaker-like cells. Cardiovasc. Res. 94, 439–449 (2012).
pubmed: 22419669 doi: 10.1093/cvr/cvs120
Jiang, J. et al. Cardiac myosin binding protein C regulates postnatal myocyte cytokinesis. Proc. Natl Acad. Sci. USA 112, 9046–9051 (2015).
pubmed: 26153423 pmcid: 4517252 doi: 10.1073/pnas.1511004112
Piroddi, N. et al. Myocardial overexpression of ANKRD1 causes sinus venosus defects and progressive diastolic dysfunction. Cardiovasc. Res. 116, 1458–1472 (2020).
pubmed: 31688894 doi: 10.1093/cvr/cvz291
Hill, C. et al. Inhibition of AP-1 signaling by JDP2 overexpression protects cardiomyocytes against hypertrophy and apoptosis induction. Cardiovasc. Res. 99, 121–128 (2013).
pubmed: 23612584 doi: 10.1093/cvr/cvt094
Kramann, R. et al. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16, 51–66 (2015).
pubmed: 25465115 doi: 10.1016/j.stem.2014.11.004
Hulsmans, M. et al. Macrophages facilitate electrical conduction in the heart. Cell 169, 510–522.e20 (2017).
pubmed: 28431249 pmcid: 5474950 doi: 10.1016/j.cell.2017.03.050
Vieira, J. M. et al. The cardiac lymphatic system stimulates resolution of inflammation following myocardial infarction. J. Clin. Invest. 128, 3402–3412 (2018).
pubmed: 29985167 pmcid: 6063482 doi: 10.1172/JCI97192
Armulik, A., Abramsson, A. & Betsholtz, C. Endothelial/pericyte interactions. Circ. Res. 97, 512–523 (2005).
pubmed: 16166562 doi: 10.1161/01.RES.0000182903.16652.d7
Deshpande, S. S., Angkeow, P., Huang, J., Ozaki, M. & Irani, K. Rac1 inhibits TNF‐α‐induced endothelial cell apoptosis: dual regulation by reactive oxygen species. FASEB J. 14, 1705–1714 (2000).
pubmed: 10973919 doi: 10.1096/fj.99-0910com
Kuppe, C. et al. Decoding myofibroblast origins in human kidney fibrosis. Nature 589, 281–286 (2021).
pubmed: 33176333 doi: 10.1038/s41586-020-2941-1
Li, Z. et al. Chromatin-accessibility estimation from single-cell ATAC-seq data with scOpen. Nat. Commun. 12, 6386 (2021).
pubmed: 34737275 pmcid: 8568974 doi: 10.1038/s41467-021-26530-2
Bugg, D. et al. MBNL1 drives dynamic transitions between fibroblasts and myofibroblasts in cardiac wound healing. Cell Stem Cell 29, 419–433.e10 (2022).
pubmed: 35176223 doi: 10.1016/j.stem.2022.01.012
Davis, J. et al. MBNL1-mediated regulation of differentiation RNAs promotes myofibroblast transformation and the fibrotic response. Nat. Commun. 6, 10084 (2015).
pubmed: 26670661 doi: 10.1038/ncomms10084
Kramann, R. et al. Pharmacological GLI2 inhibition prevents myofibroblast cell-cycle progression and reduces kidney fibrosis. J. Clin. Invest. 125, 2935–2951 (2015).
pubmed: 26193634 pmcid: 4563736 doi: 10.1172/JCI74929
Lawler, J. Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J. Cell. Mol. Med. 6, 1–12 (2002).
pubmed: 12003665 pmcid: 6740251 doi: 10.1111/j.1582-4934.2002.tb00307.x
Alexanian, M. et al. A transcriptional switch governs fibroblast activation in heart disease. Nature 595, 438–443 (2021).
pubmed: 34163071 pmcid: 8341289 doi: 10.1038/s41586-021-03674-1
Forte, E. et al. Cross-priming dendritic cells exacerbate immunopathology after ischemic tissue damage in the heart. Circulation 143, 821–836 (2021).
pubmed: 33297741 doi: 10.1161/CIRCULATIONAHA.120.044581
Dick, S. A. et al. Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles. Sci. Immunol. 7, eabf7777 (2022).
pubmed: 34995099 doi: 10.1126/sciimmunol.abf7777
MacDonald, L. et al. COVID-19 and RA share an SPP1 myeloid pathway that drives PD-L1+ neutrophils and CD14
pmcid: 8328085 doi: 10.1172/jci.insight.147413
Morse, C. et al. Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. Eur. Respir. J. 54, 1802441 (2019).
pubmed: 31221805 pmcid: 8025672 doi: 10.1183/13993003.02441-2018
Bevan, L. et al. Specific macrophage populations promote both cardiac scar deposition and subsequent resolution in adult zebrafish. Cardiovasc. Res. 116, 1357–1371 (2020).
pubmed: 31566660 doi: 10.1093/cvr/cvz221
DeLeon-Pennell, K. Y. et al. CD36 is a matrix metalloproteinase-9 substrate that stimulates neutrophil apoptosis and removal during cardiac remodeling. Circ. Cardiovasc. Genet. 9, 14–25 (2016).
pubmed: 26578544 doi: 10.1161/CIRCGENETICS.115.001249
Ismahil, M. A. et al. Remodeling of the mononuclear phagocyte network underlies chronic inflammation and disease progression in heart failure: critical importance of the cardiosplenic axis. Circ. Res. 114, 266–282 (2014).
pubmed: 24186967 doi: 10.1161/CIRCRESAHA.113.301720
Shiraishi, M. et al. Alternatively activated macrophages determine repair of the infarcted adult murine heart. J. Clin. Invest. 126, 2151–2166 (2016).
pubmed: 27140396 pmcid: 4887176 doi: 10.1172/JCI85782
Bergmann, O. et al. Dynamics of cell generation and turnover in the human heart. Cell 161, 1566–1575 (2015).
pubmed: 26073943 doi: 10.1016/j.cell.2015.05.026
Yekelchyk, M., Guenther, S., Preussner, J. & Braun, T. Mono- and multi-nucleated ventricular cardiomyocytes constitute a transcriptionally homogenous cell population. Basic Res. Cardiol. 114, 36 (2019).
pubmed: 31399804 pmcid: 6689038 doi: 10.1007/s00395-019-0744-z
Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 14, 955–958 (2017).
pubmed: 28846088 pmcid: 5623139 doi: 10.1038/nmeth.4407
Koenig, A. L. et al. Single-cell transcriptomics reveals cell-type-specific diversification in human heart failure. Nat. Cardiovasc. Res. 1, 263–280 (2022).
Tippani, M. et al. VistoSeg: processing utilities for high-resolution Visium/Visium-IF images for spatial transcriptomics data. bioRxiv https://www.biorxiv.org/content/10.1101/2021.08.04.452489v2 (2022).
Curaj, A., Simsekyilmaz, S., Staudt, M. & Liehn, E. et al. Minimal invasive surgical procedure of inducing myocardial infarction in mice. J. Vis. Exp. 99, e52197 (2015).
Linkert, M. et al. Metadata matters: access to image data in the real world. J. Cell Biol. 189, 777–782 (2010).
pubmed: 20513764 pmcid: 2878938 doi: 10.1083/jcb.201004104
Bahry, E. et al. RS-FISH: precise, interactive, fast, and scalable FISH spot detection. Preprint at bioRxiv https://doi.org/10.1101/2021.03.09.434205 (2021).
Greenwald, N. F. et al. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nat. Biotechnol. 40, 555–565 (2021).
pubmed: 34795433 pmcid: 9010346 doi: 10.1038/s41587-021-01094-0
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
pubmed: 22930834 pmcid: 5554542 doi: 10.1038/nmeth.2089
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).
pubmed: 34062119 pmcid: 8238499 doi: 10.1016/j.cell.2021.04.048
Germain, P.-L., Lun, A., Macnair, W. & Robinson, M. D. Doublet identification in single-cell sequencing data using scDblFinder. F1000Res. 10, 979 (2021).
pubmed: 35814628 doi: 10.12688/f1000research.73600.1
O’Flanagan, C. H. et al. Dissociation of solid tumor tissues with cold active protease for single-cell RNA-seq minimizes conserved collagenase-associated stress responses. Genome Biol. 20, 210 (2019).
pubmed: 31623682 pmcid: 6796327 doi: 10.1186/s13059-019-1830-0
Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).
pubmed: 31740819 pmcid: 6884693 doi: 10.1038/s41592-019-0619-0
McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297 (2012).
pubmed: 22287627 pmcid: 3378882 doi: 10.1093/nar/gks042
Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).
pubmed: 29409532 pmcid: 5802054 doi: 10.1186/s13059-017-1382-0
Granja, J. M. et al. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat. Genet. 53, 403–411 (2021).
pubmed: 33633365 pmcid: 8012210 doi: 10.1038/s41588-021-00790-6
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).
pubmed: 31178118 pmcid: 6687398 doi: 10.1016/j.cell.2019.05.031
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).
pubmed: 18798982 pmcid: 2592715 doi: 10.1186/gb-2008-9-9-r137
Li, Z. et al. Identification of transcription factor binding sites using ATAC-seq. Genome Biol. 20, 45 (2019).
pubmed: 30808370 pmcid: 6391789 doi: 10.1186/s13059-019-1642-2
Fornes, O. et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 48, D87–D92 (2020).
pubmed: 31701148
Badia-i-Mompel, P. et al. decoupleR: ensemble of computational methods to infer biological activities from omics data. Bioinformatics Adv. 2, vbac016 (2022).
doi: 10.1093/bioadv/vbac016
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).
pubmed: 25722852 pmcid: 4342193 doi: 10.1186/s13742-015-0047-8
Ulirsch, J. C. et al. Interrogation of human hematopoiesis at single-cell and single-variant resolution. Nat. Genet. 51, 683–693 (2019).
pubmed: 30858613 pmcid: 6441389 doi: 10.1038/s41588-019-0362-6
Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 8, 281–291.e9 (2019).
pubmed: 30954476 pmcid: 6625319 doi: 10.1016/j.cels.2018.11.005
Hansen, B. B. & Klopfer, S. O. Optimal full matching and related designs via network flows. J. Comput. Graph. Stat. 15, 609–627 (2006).
doi: 10.1198/106186006X137047
Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 13, 845–848 (2016).
pubmed: 27571553 doi: 10.1038/nmeth.3971
Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat. Methods 14, 975–978 (2017).
pubmed: 28825706 pmcid: 5623146 doi: 10.1038/nmeth.4401
Freeman, L. C. Centrality in social networks conceptual clarification. Soc. Networks 1, 215–239 (1978).
doi: 10.1016/0378-8733(78)90021-7
Page L. et al. The PageRank Citation Ranking: Bringing Order to the Web. (Stanford IfoLab, 1999).
Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).
pubmed: 31870423 pmcid: 6927181 doi: 10.1186/s13059-019-1874-1
Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. Nat. Biotechnol. 40, 661–671 (2022).
pubmed: 35027729 doi: 10.1038/s41587-021-01139-4
Schubert, M. et al. Perturbation-response genes reveal signaling footprints in cancer gene expression. Nat. Commun. 9, 20 (2018).
pubmed: 29295995 pmcid: 5750219 doi: 10.1038/s41467-017-02391-6
Holland, C. H., Szalai, B. & Saez-Rodriguez, J. Transfer of regulatory knowledge from human to mouse for functional genomics analysis. Biochim. Biophys. Acta 1863, 194431 (2020).
doi: 10.1016/j.bbagrm.2019.194431
Zhu, J., Sun, S. & Zhou, X. SPARK-X: non-parametric modeling enables scalable and robust detection of spatial expression patterns for large spatial transcriptomic studies. Genome Biol. 22, 184 (2021).
pubmed: 34154649 pmcid: 8218388 doi: 10.1186/s13059-021-02404-0
Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011).
pubmed: 21546393 pmcid: 3106198 doi: 10.1093/bioinformatics/btr260
Gillespie, M. et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 50, D687–D692 (2021).
pmcid: 8689983 doi: 10.1093/nar/gkab1028
Grant, A. O. Cardiac ion channels. Circ. Arrhythm. Electrophysiol. 2, 185–194 (2009).
pubmed: 19808464 doi: 10.1161/CIRCEP.108.789081
Tanevski, J., Flores, R. O. R., Gabor, A., Schapiro, D. & Saez-Rodriguez, J. Explainable multiview framework for dissecting spatial relationships from highly multiplexed data. Genome Biol. 23, 97 (2022).
Pawlowsky-Glahn V. & Buccianti A. Compositional Data Analysis: Theory and Applications. (John Wiley & Sons, 2011).
doi: 10.1002/9781119976462
Lun, A. T. L., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Res. 5, 2122 (2016).
pubmed: 27909575 pmcid: 5112579
Dimitrov, D. et al. Comparison of methods and resources for cell-cell communication inference from single-cell RNA-Seq data. Nat. Commun. 13, 3224 (2022).
Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).
pubmed: 32103204 doi: 10.1038/s41596-020-0292-x
Türei, D. et al. Integrated intra- and intercellular signaling knowledge for multicellular omics analysis. Mol. Syst. Biol. 17, e9923 (2021).
pubmed: 33749993 pmcid: 7983032 doi: 10.15252/msb.20209923
Nagai, J. S., Leimkühler, N. B., Schaub, M. T., Schneider, R. K. & Costa, I. G. CrossTalkeR: analysis and visualization of ligand–receptor networks. Bioinformatics 37, 4263–4265 (2021).
pubmed: 35032393 doi: 10.1093/bioinformatics/btab370
Alquicira-Hernandez, J. & Powell, J. E. Nebulosa recovers single cell gene expression signals by kernel density estimation. Bioinformatics 37, 2485–2487 (2021).
doi: 10.1093/bioinformatics/btab003
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995).

Auteurs

Christoph Kuppe (C)

Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany.
Division of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany.

Ricardo O Ramirez Flores (RO)

Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany.
Informatics for Life, Heidelberg, Germany.

Zhijian Li (Z)

Institute for Computational Genomics, RWTH Aachen University, Medical Faculty, Aachen, Germany.
Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany.

Sikander Hayat (S)

Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany.

Rebecca T Levinson (RT)

Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany.
Informatics for Life, Heidelberg, Germany.
Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, Heidelberg, Germany.

Xian Liao (X)

Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany.

Monica T Hannani (MT)

Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany.
Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany.

Jovan Tanevski (J)

Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany.
Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia.

Florian Wünnemann (F)

Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany.

James S Nagai (JS)

Institute for Computational Genomics, RWTH Aachen University, Medical Faculty, Aachen, Germany.
Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany.

Maurice Halder (M)

Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany.

David Schumacher (D)

Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany.

Sylvia Menzel (S)

Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany.

Gideon Schäfer (G)

Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany.

Konrad Hoeft (K)

Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany.

Mingbo Cheng (M)

Institute for Computational Genomics, RWTH Aachen University, Medical Faculty, Aachen, Germany.
Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany.

Susanne Ziegler (S)

Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany.

Xiaoting Zhang (X)

Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany.

Fabian Peisker (F)

Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany.

Nadine Kaesler (N)

Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany.
Division of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany.

Turgay Saritas (T)

Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany.
Division of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany.

Yaoxian Xu (Y)

Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany.

Astrid Kassner (A)

Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, Bad Oeynhausen, Germany.

Jan Gummert (J)

Heart and Diabetes Center, North Rhine-Westphalia, Bad Oeynhausen, Germany.

Michiel Morshuis (M)

Heart and Diabetes Center, North Rhine-Westphalia, Bad Oeynhausen, Germany.

Junedh Amrute (J)

Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.

Rogier J A Veltrop (RJA)

Institute for Molecular Cardiovascular Research IMCAR, RWTH Aachen University, Medical Faculty, Aachen, Germany.
Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.

Peter Boor (P)

Division of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany.
Department of Pathology, RWTH Aachen University, Aachen, Germany.

Karin Klingel (K)

Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany.

Linda W Van Laake (LW)

Department of Cardiology, Regenerative Medicine Center and Circulatory Health Lab, University Medical Center Utrecht, Utrecht, The Netherlands.

Aryan Vink (A)

Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.

Remco M Hoogenboezem (RM)

Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.

Eric M J Bindels (EMJ)

Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.

Leon Schurgers (L)

Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany.
Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.

Susanne Sattler (S)

National Heart and Lung Institute, Imperial College London, London, UK.

Denis Schapiro (D)

Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany.
Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.

Rebekka K Schneider (RK)

Institute of Cell and Tumor Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany.
Oncode Institute, Erasmus Medical Center, Rotterdam, The Netherlands.

Kory Lavine (K)

Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.

Hendrik Milting (H)

Erich and Hanna Klessmann Institute for Cardiovascular Research and Development, Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, Bad Oeynhausen, Germany.

Ivan G Costa (IG)

Institute for Computational Genomics, RWTH Aachen University, Medical Faculty, Aachen, Germany.
Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany.

Julio Saez-Rodriguez (J)

Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany. pub.saez@uni-heidelberg.de.
Informatics for Life, Heidelberg, Germany. pub.saez@uni-heidelberg.de.

Rafael Kramann (R)

Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Medical Faculty, Aachen, Germany. rkramann@gmx.net.
Division of Nephrology and Clinical Immunology, RWTH Aachen University, Medical Faculty, Aachen, Germany. rkramann@gmx.net.
Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands. rkramann@gmx.net.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH