Probabilistic analysis of water-sealed performance in underground oil storage considering spatial variability of hydraulic conductivity.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
12 Aug 2022
12 Aug 2022
Historique:
received:
25
02
2022
accepted:
19
07
2022
entrez:
12
8
2022
pubmed:
13
8
2022
medline:
13
8
2022
Statut:
epublish
Résumé
For underground water-sealed oil storage, the spatial variability of the surrounding rock has a significant impact on the water-sealed effect of a water curtain system. This study presents a methodology for the probabilistic analysis of water curtain performance in underground oil storage, considering the spatial variability of hydraulic conductivity of the surrounding rock based on field data. Anisotropic random fields representing the spatial variability of hydraulic conductivity were established through spatial statistical analysis of field data and introduced into the finite element model of underground oil storage for water-sealed reliability analysis. The water-sealed performance of different water curtain system schemes was studied using Monte Carlo simulation (MCS). The results showed that the difference between the horizontal spatial correlation and the vertical spatial correlation of the surrounding rock has a significant impact on the water-sealed effect of the water curtain system. An excessively large pressure of water curtain boreholes provided a small contribution to improving water curtain performance. The distance between the water curtain holes and the caverns had the less significant affecting the water-sealed reliability of the storage cavern. Finally, the optimal design of the water curtain system is discussed. This study provides valuable insights and a theoretical basis for the optimisation of water curtain system design parameters for underground water-sealed oil storage.
Identifiants
pubmed: 35962004
doi: 10.1038/s41598-022-16960-3
pii: 10.1038/s41598-022-16960-3
pmc: PMC9374700
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
13782Subventions
Organisme : National Natural Science Foundation of China
ID : No. 41972300, No. 41572301 and No. 40902086
Organisme : Fundamental Research Funds for the Central Universities of China
ID : No. 2-65-2019-225, No. 2-65-2019-226
Informations de copyright
© 2022. The Author(s).
Références
Morfeldt, C. O. Storage of petroleum products in man-made caverns in Sweden. Bull. Eng. Geol. Environ. 28(1), 17–30. https://doi.org/10.1007/bf02594793 (1983).
doi: 10.1007/bf02594793
Lu, M. Finite element analysis of a pilot gas storage in rock cavern under high pressure. Eng. Geol. 49(3–4), 353–361. https://doi.org/10.1016/S0013-7952(97)00067-7 (1998).
doi: 10.1016/S0013-7952(97)00067-7
Åberg, B. Prevention of gas leakage from unlined reservoir in rock. In Proceedings of International Symposium on Storage in Excavated Rock Caverns, Stockholm, Sweden 399–413 (1977).
Li, Z. K., Lu, B. Q., Zou, J., Xu, B. & Zhang, Z. Z. Design and operation problems related to water curtain system for underground water-sealed oil storage caverns. J. Rock Mech. Geotech. Eng. 8(5), 689–696. https://doi.org/10.1016/j.jrmge.2016.06.003 (2016).
doi: 10.1016/j.jrmge.2016.06.003
Lee, C. I. & Song, J. J. Rock engineering in underground energy storage in Korea. Tunn. Undergr. Space Technol. 18(5), 467–483. https://doi.org/10.1016/S0886-7798(03)00046-4 (2003).
doi: 10.1016/S0886-7798(03)00046-4
Goodall, D. C., Aberg, B. & Brekke, T. L. Fundamentals of gas containment in unlined rock caverns. Rock Mech. Rock Eng. 21(4), 235–258. https://doi.org/10.1007/Bf01020278 (1988).
doi: 10.1007/Bf01020278
Wang, Z. C., Li, S. C. & Qiao, L. P. Design and test aspects of a water curtain system for underground oil storage caverns in China. Tunn. Undergr. Space Technol. 48, 20–34. https://doi.org/10.1016/j.tust.2015.01.009 (2015).
doi: 10.1016/j.tust.2015.01.009
Rehbinder, G., Karlsson, R. & Dahlkild, A. A study of a water curtain around a gas store in rock. Appl. Sci. Res. 45(2), 107–127. https://doi.org/10.1007/Bf00386207 (1988).
doi: 10.1007/Bf00386207
Li, Z. K., Wang, K. Z., Wang, A. M. & Liu, H. Experimental study of water curtain performance for gas storage in an underground cavern. J. Rock Mech. Geotech. Eng. 1(1), 89–96. https://doi.org/10.3724/sp.j.1235.2009.00089 (2009).
doi: 10.3724/sp.j.1235.2009.00089
Ravandi, E. G., Rahmannejad, R., Karimi-Nasab, S. & Sarrafi, A. Sensitivity analysis of effective parameters on water curtain performance for crude oil storage in Iranian URC using the 2(k) factorial design and numerical modeling. Tunn. Undergr. Space Technol. 58, 247–256. https://doi.org/10.1016/j.tust.2016.06.001 (2016).
doi: 10.1016/j.tust.2016.06.001
Xu, Z. H. et al. A groundwater seal evaluation method based on water inflow for underground oil storage caverns. Tunn. Undergr. Space Technol. 82, 265–277. https://doi.org/10.1016/j.tust.2018.08.030 (2018).
doi: 10.1016/j.tust.2018.08.030
Guo, X., Dias, D. & Pan, Q. Probabilistic stability analysis of an embankment dam considering soil spatial variability. Comput. Geotech. 113, 103093. https://doi.org/10.1016/j.compgeo.2019.103093 (2019).
doi: 10.1016/j.compgeo.2019.103093
Vanmarcke, E., Shinozuka, M., Nakagiri, S., Schuëller, G. I. & Grigoriu, M. Random fields and stochastic finite elements. Struct. Saf. 3, 143–166. https://doi.org/10.1016/0167-4730(86)90002-0 (1986).
doi: 10.1016/0167-4730(86)90002-0
Wang, Z. Z. & Goh, S. H. Novel approach to efficient slope reliability analysis in spatially variable soils. Eng. Geol. 281, 105989. https://doi.org/10.1016/j.enggeo.2020.105989 (2021).
doi: 10.1016/j.enggeo.2020.105989
Mouyeaux, A. et al. Probabilistic analysis of pore water pressures of an earth dam using a random finite element approach based on field data. Eng. Geol. 259, 105190. https://doi.org/10.1016/j.enggeo.2019.105190 (2019).
doi: 10.1016/j.enggeo.2019.105190
Johari, A. & Heydari, A. Reliability analysis of seepage using an applicable procedure based on stochastic scaled boundary finite element method. Eng. Anal. Bound. Elem. https://doi.org/10.1016/j.compgeo.2018.02.019 (2018).
doi: 10.1016/j.compgeo.2018.02.019
Johari, A., Heydari, A. & Talebi, A. Prediction of discharge flow rate beneath sheet piles using scaled boundary finite element modeling database. Sci. Iran. https://doi.org/10.24200/SCI.2020.53281.3158 (2021).
doi: 10.24200/SCI.2020.53281.3158
Hekmatzadeh, A. A. et al. Reliability analysis of stability against piping and sliding in diversion dams, considering four cutoff wall configurations. Comput. Geotech. 98, 217–231. https://doi.org/10.1016/j.compgeo.2018.02.019 (2018).
doi: 10.1016/j.compgeo.2018.02.019
Lü, Q., Xiao, Z. P., Zheng, J. & Shang, Y. Q. Probabilistic assessment of tunnel convergence considering spatial variability in rock mass properties using interpolated autocorrelation and response surface method. Geosci. Front. 9(6), 1619–1629. https://doi.org/10.1016/j.gsf.2017.08.007 (2018).
doi: 10.1016/j.gsf.2017.08.007
Gao, X. et al. Reliability analysis of hydrologic containment of underground storage of liquefied petroleum gas. Tunn. Undergr. Space Technol. 79, 12–26. https://doi.org/10.1016/j.tust.2018.04.037 (2018).
doi: 10.1016/j.tust.2018.04.037
Zhang, Y., Zhang, Q. Y., Duan, K., Yu, G. Y. & Jiao, Y. Y. Reliability analysis of deep underground research laboratory in Beishan for geological disposal of high-level radioactive waste. Comput. Geotech. 118(1), 103328. https://doi.org/10.1016/j.compgeo.2019.103328 (2020).
doi: 10.1016/j.compgeo.2019.103328
Juang, C. H., Yang, S. H. & Yuan, H. Model uncertainty of shear wave velocity-based method for liquefaction potential evaluation. J. Geotech. Geoenviron. 131, 1274–1282. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1274) (2005).
doi: 10.1061/(ASCE)1090-0241(2005)131:10(1274)
Li, D. Q., Wang, L., Cao, Z. J. & Qi, X. H. Reliability analysis of unsaturated slope stability considering SWCC model selection and parameter uncertainties. Eng. Geol. 260, 105207. https://doi.org/10.1016/j.enggeo.2019.105207 (2019).
doi: 10.1016/j.enggeo.2019.105207
Wang, L., Hwang, J. H., Luo, Z., Juang, C. H. & Xiao, J. Probabilistic back analysis of slope failure—A case study in Taiwan. Comput. Geotech. 51, 12–23. https://doi.org/10.1016/j.compgeo.2013.01.008 (2013).
doi: 10.1016/j.compgeo.2013.01.008
Liu, X., Li, D. Q., Cao, Z. J. & Wang, Y. Adaptive Monte Carlo simulation method for system reliability analysis of slope stability based on limit equilibrium methods. Eng. Geol. 264, 105384. https://doi.org/10.1016/j.enggeo.2019.105384 (2020).
doi: 10.1016/j.enggeo.2019.105384
Vanmarcke, E. H. Random Fields: Analysis and Synthesis Revised and Expanded New. (World Scientific Publishing, 2010). https://doi.org/10.1142/5807 .
doi: 10.1142/5807
Ghanem, R. G. & Spanos, P. D. Stochastic Finite Elements: A Spectral Approach 101–119 (Springer, 1991). https://doi.org/10.1007/978-1-4612-3094-6 .
doi: 10.1007/978-1-4612-3094-6
Pan, Q. & Dias, D. Probabilistic evaluation of tunnel face stability in spatially random soils using sparse polynomial chaos expansion with global sensitivity analysis. Acta Geotech. 12(6), 1415–1429. https://doi.org/10.1007/s11440-017-0541-5 (2017).
doi: 10.1007/s11440-017-0541-5
Huang, S. P. Simulation of Random Processes Using Karhunen–Loeve Expansion. Ph.D. thesis, National University of Singapore (2001).
Jiang, S. H., Li, D. Q., Zhang, L. M. & Zhou, C. B. Slope reliability analysis considering spatially variable shear strength parameters using a non-intrusive stochastic finite element method. Eng. Geol. 168, 120–128. https://doi.org/10.1016/j.enggeo.2013.11.006 (2014).
doi: 10.1016/j.enggeo.2013.11.006
Zhang, B., Shi, L., Yu, X. & Qi, S. W. Assessing the water-sealed safety of an operating underground crude oil storage adjacent to a new similar cavern—A case study in China. Eng. Geol. 249, 257–272. https://doi.org/10.1016/j.enggeo.2019.01.008 (2019).
doi: 10.1016/j.enggeo.2019.01.008
Kjørholt, H. & Broch, E. The water curtain—A successful means of preventing gas leakage from high-pressure unlined rock caverns. Tunn. Undergr. Space Technol. 7(2), 127–132. https://doi.org/10.1016/0886-7798(92)90042-g (1992).
doi: 10.1016/0886-7798(92)90042-g
Duncan, J. M. Factors of safety and reliability in geotechnical engineering. J. Geotech. Geoenviron. 126(4), 307–316. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:4(307) (2000).
doi: 10.1061/(ASCE)1090-0241(2000)126:4(307)
Shi, L., Zhang, B., Wang, L., Wang, H. X. & Zhang, H. J. Functional efficiency assessment of the water curtain system in an underground water-sealed oil storage cavern based on time-series monitoring data. Eng. Geol. 239, 79–95. https://doi.org/10.1016/j.enggeo.2018.03.015 (2018).
doi: 10.1016/j.enggeo.2018.03.015
Freeze, R. A. A stochastic-conceptual analysis of one-dimensional groundwater flow in nonuniform homogeneous media. Water Resour. Res. 11(5), 725–741. https://doi.org/10.1029/WR011i005p00725 (1975).
doi: 10.1029/WR011i005p00725
Griffiths, D. V. & Fenton, G. A. Probabilistic Method in Geotechnical Engineering 54 (Springer, 2007). https://doi.org/10.1007/978-3-211-73366-0 .
doi: 10.1007/978-3-211-73366-0
Domenico, P. A. & Schwartz, F. W. Physical and Chemical Hydrogeology 2nd edn, 506 (Wiley, 1998).
DeGroot, D. J. & Baecher, G. B. Estimating autocovariance of in situ soil properties. J. Geotech. Eng. 119(1), 147–166. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:1(147) (1993).
doi: 10.1061/(ASCE)0733-9410(1993)119:1(147)
Onyejekwe, S., Kang, X. & Ge, L. Evaluation of the scale of fluctuation of geotechnical parameters by autocorrelation function and semivariogram function. Eng. Geol. 214, 43–49. https://doi.org/10.1016/j.enggeo.2016.09.014 (2016).
doi: 10.1016/j.enggeo.2016.09.014
Nielsen, D. R., Biggar, J. W. & Erh, K. T. Spatial variability of field-measured soil–water properties. Hilgardia 42(7), 215–259. https://doi.org/10.3733/hilg.v42n07p215 (1973).
doi: 10.3733/hilg.v42n07p215
Jimenez-Rodriguez, R., Sitar, N. & Chacón, J. System reliability approach to rock slope stability. Int. J. Rock Mech. Min. 43, 847–859. https://doi.org/10.1016/j.ijrmms.2005.11.011 (2006).
doi: 10.1016/j.ijrmms.2005.11.011
GB 50455-2020 Code for Design of underground oil storage in rock caverns. Ministry of Housing and Urban–Rural Development of the People's Republic of China (in Chinese) (2020).
Li, Y. J., Hicks, M. A. & Vardon, P. J. Uncertainty reduction and sampling efficiency in slope designs using 3D conditional random fields. Comput. Geotech. 79, 159–172. https://doi.org/10.1016/j.compgeo.2016.05.027 (2016).
doi: 10.1016/j.compgeo.2016.05.027