Library Screening for Synergistic Combinations of FDA-Approved Drugs and Metabolites with Vancomycin against VanA-Type Vancomycin-Resistant Enterococcus faecium.
Enterococcus faecium
VRE
antibiotic drug resistance
antimicrobial resistance
cytochrome P450
drug metabolism
drug repurposing
library screening
metabolism
microsome
synergy screening
vancomycin resistance
Journal
Microbiology spectrum
ISSN: 2165-0497
Titre abrégé: Microbiol Spectr
Pays: United States
ID NLM: 101634614
Informations de publication
Date de publication:
26 10 2022
26 10 2022
Historique:
pubmed:
16
8
2022
medline:
29
10
2022
entrez:
15
8
2022
Statut:
ppublish
Résumé
Antimicrobial resistance is a major public health threat, and there is an urgent need for new strategies to address this issue. In a recent study, a library screening strategy was developed in which an FDA-approved drug library was screened against methicillin-resistant Staphylococcus aureus (MRSA) in both its original (unmetabolized [UM]) and its human liver microsome metabolized (postmetabolized [PM]) forms and in the absence and presence of a resistant-to antibiotic. This allows the identification of agents with active metabolites and agents that can act synergistically with the resistant-to antibiotic. In this study, this strategy is applied to VanA-type vancomycin-resistant Enterococcus faecium (VREfm) in the absence and presence of vancomycin. Thirteen drugs with minimum MICs that were ≤12.5 μM under any tested condition (UM/PM vs. -/+vancomycin) were identified. Seven of these appeared to act synergistically with vancomycin, and follow-up checkerboard analyses confirmed synergy (∑FICmin ≤0.5) for six of these. Ultimately four rifamycins, two pleuromutilins, mupirocin, and linezolid were confirmed as synergistic. The most synergistic agent was rifabutin (∑FICmin = 0.19). Linezolid, a protein biosynthesis inhibitor, demonstrated relatively weak synergy (∑FICmin = 0.5). Only mupirocin showed significantly improved activity after microsomal metabolism, indicative of a more active metabolite, but efforts to identify an active metabolite were unsuccessful. Spectra of activity of several hits and related agents were also determined. Gemcitabine showed activity against a number vancomycin-resistant E. faecium and E. faecalis strains, but this activity was substantially weaker than previously observed in MRSA.
Identifiants
pubmed: 35969069
doi: 10.1128/spectrum.01412-22
pmc: PMC9603392
doi:
Substances chimiques
Vancomycin
6Q205EH1VU
Linezolid
ISQ9I6J12J
Mupirocin
D0GX863OA5
Anti-Bacterial Agents
0
Rifabutin
1W306TDA6S
Rifamycins
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0141222Subventions
Organisme : NIGMS NIH HHS
ID : R15 GM126502
Pays : United States
Organisme : HHS | National Institutes of Health (NIH)
ID : R15-GM126502
Références
PLoS One. 2020 Jul 28;15(7):e0236604
pubmed: 32722726
ACS Chem Biol. 2019 Dec 20;14(12):2887-2894
pubmed: 31675203
J Med Chem. 1998 Jul 30;41(16):2939-45
pubmed: 9685233
Sensors (Basel). 2012;12(9):12347-60
pubmed: 23112716
Pathogens. 2021 Oct 12;10(10):
pubmed: 34684258
Expert Rev Anti Infect Ther. 2015 Mar;13(3):363-77
pubmed: 25661903
J Bacteriol. 2009 Apr;191(7):2248-56
pubmed: 19168608
ACS Chem Biol. 2021 Aug 20;16(8):1610-1611
pubmed: 34324290
Nat Chem Biol. 2013 Apr;9(4):222-31
pubmed: 23508188
Nat Rev Microbiol. 2020 May;18(5):286-298
pubmed: 32152509
Expert Rev Anti Infect Ther. 2020 Jan;18(1):5-15
pubmed: 31847614
Front Microbiol. 2019 Jan 28;10:41
pubmed: 30745898
Expert Opin Pharmacother. 2009 Dec;10(17):2829-43
pubmed: 19929705
Curr Top Med Chem. 2018;18(14):1188-1202
pubmed: 30117393
Pharmacol Rev. 2013 Feb 13;65(2):578-640
pubmed: 23406671
PLoS One. 2014 Feb 19;9(2):e89189
pubmed: 24586584
Expert Opin Pharmacother. 2009 Apr;10(5):785-96
pubmed: 19351228
Lancet Respir Med. 2021 Jun;9(6):e54
pubmed: 34000239
Nat Rev Drug Discov. 2007 Jan;6(1):29-40
pubmed: 17159923
Antimicrob Agents Chemother. 2007 Aug;51(8):2726-32
pubmed: 17526755
Nat Chem Biol. 2011 Jun;7(6):348-50
pubmed: 21516114
Int J Antimicrob Agents. 2017 Apr;49(4):507-511
pubmed: 28235571
Nat Rev Microbiol. 2019 Mar;17(3):141-155
pubmed: 30683887
Nat Rev Microbiol. 2012 Mar 16;10(4):266-78
pubmed: 22421879
J Antibiot (Tokyo). 2017 Jan;70(1):3-24
pubmed: 27353164
Antimicrob Agents Chemother. 2022 Mar 15;66(3):e0199121
pubmed: 35007139
PLoS One. 2016 Dec 29;11(12):e0169090
pubmed: 28033417
Clin Microbiol Rev. 2020 May 13;33(3):
pubmed: 32404435
Mayo Clin Proc. 2011 Dec;86(12):1230-43
pubmed: 22134942
J Bacteriol. 2021 Jul 22;203(16):e0023021
pubmed: 34060906
Lancet Infect Dis. 2018 Mar;18(3):318-327
pubmed: 29276051
Nature. 2016 Jan 21;529(7586):336-43
pubmed: 26791724
J Clin Microbiol. 1996 Nov;34(11):2654-9
pubmed: 8897159
Pathogens. 2017 Sep 20;6(3):
pubmed: 28930155
P T. 2015 Apr;40(4):277-83
pubmed: 25859123
Nat Rev Drug Discov. 2015 Aug;14(8):529-42
pubmed: 26139286
Int J Antimicrob Agents. 2018 Jun;51(6):897-904
pubmed: 29432868
Int J Antimicrob Agents. 2012 May;39(5):444-7
pubmed: 22445492
Proc Natl Acad Sci U S A. 1973 May;70(5):1564-8
pubmed: 4576025
Yakugaku Zasshi. 2010 Oct;130(10):1325-37
pubmed: 20930485
Infect Dis Clin North Am. 2020 Dec;34(4):751-771
pubmed: 33131572