Long-term changes in plasma proteomic profiles in premenopausal and postmenopausal Black and White women: the Atherosclerosis Risk in Communities study.
Journal
Menopause (New York, N.Y.)
ISSN: 1530-0374
Titre abrégé: Menopause
Pays: United States
ID NLM: 9433353
Informations de publication
Date de publication:
01 10 2022
01 10 2022
Historique:
pubmed:
16
8
2022
medline:
28
9
2022
entrez:
15
8
2022
Statut:
ppublish
Résumé
The activity, localization, and turnover of proteins within cells and plasma may contribute to physiologic changes during menopause and may influence disease occurrence. We examined cross-sectional differences and long-term changes in plasma proteins between premenopausal and naturally postmenopausal women. We used data from 4,508 (19% Black) women enrolled in the Atherosclerosis Risk in Communities study. SOMAscan multiplexed aptamer technology was used to measure 4,697 plasma proteins. Linear regression models were used to compare differences in proteins at baseline (1993-1995) and 18-year change in proteins from baseline to 2011-2013. At baseline, 472 women reported being premenopausal and 4,036 women reported being postmenopausal, with average ages of 52.3 and 61.4 years, respectively. A greater proportion of postmenopausal women had diabetes (15 vs 9%), used hypertension (38 vs 27%) and lipid-lowering medications (10 vs 3%), and had elevated total cholesterol and waist girth. In multivariable adjusted models, 38 proteins differed significantly between premenopausal and postmenopausal women at baseline, with 29 of the proteins also showing significantly different changes between groups over the 18-year follow-up as the premenopausal women also reached menopause. These proteins were associated with various molecular/cellular functions (cellular development, growth, proliferation and maintenance), physiological system development (skeletal and muscular system development, and cardiovascular system development and function), and diseases/disorders (hematological and metabolic diseases and developmental disorders). We observed significantly different changes between premenopausal and postmenopausal women in several plasma proteins that reflect many biological processes. These processes may help to understand disease development during the postmenopausal period.
Identifiants
pubmed: 35969495
doi: 10.1097/GME.0000000000002031
pii: 00042192-202210000-00008
pmc: PMC9509415
mid: NIHMS1813004
doi:
Substances chimiques
Lipids
0
Cholesterol
97C5T2UQ7J
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
1150-1160Subventions
Organisme : NHLBI NIH HHS
ID : HHSN268201700002C
Pays : United States
Organisme : NHLBI NIH HHS
ID : HHSN268201700001I
Pays : United States
Organisme : NHLBI NIH HHS
ID : HHSN268201700004I
Pays : United States
Organisme : NHLBI NIH HHS
ID : HHSN268201700004C
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL134320
Pays : United States
Organisme : NHLBI NIH HHS
ID : HHSN268201700003I
Pays : United States
Organisme : NHLBI NIH HHS
ID : HHSN268201700005C
Pays : United States
Organisme : NHLBI NIH HHS
ID : HHSN268201700001C
Pays : United States
Organisme : NHLBI NIH HHS
ID : HHSN268201700003C
Pays : United States
Organisme : NHLBI NIH HHS
ID : HHSN268201700002I
Pays : United States
Organisme : NHLBI NIH HHS
ID : HHSN268201700005I
Pays : United States
Informations de copyright
Copyright © 2022 by The North American Menopause Society.
Déclaration de conflit d'intérêts
Financial disclosure/conflicts of interest: E.D.M. reports advisory boards: Amarin, AstraZeneca, Bayer, Esperion, Novartis, Novo Nordisk. The other authors have nothing to declare.
Références
Appiah D, Nwabuo CC, Ebong IA, Wellons MF, Winters SJ. Trends in age at natural menopause and reproductive life span among US women, 1959–2018. JAMA 2021;325:1328–1330. doi:10.1001/jama.2021.0278
doi: 10.1001/jama.2021.0278
de Kat AC, Dam V, Onland-Moret NC, Eijkemans MJC, Broekmans FJM, van der Schouw YT. Unraveling the associations of age and menopause with cardiovascular risk factors in a large population-based study. BMC Med 2017;15:2. doi:10.1186/s12916-016-0762-8
doi: 10.1186/s12916-016-0762-8
Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. Lancet Oncol 2012;13:1141–1151. doi:10.1016/S1470-2045(12)70425-4
doi: 10.1016/S1470-2045(12)70425-4
Wu Y, Sun W, Liu H, Zhang D. Age at menopause and risk of developing endometrial cancer: a meta-analysis. Biomed Res Int 2019;2019:8584130. doi:10.1155/2019/8584130
doi: 10.1155/2019/8584130
Appiah D, Schreiner PJ, Bower JK, Sternfeld B, Lewis CE, Wellons MF. Is surgical menopause associated with future levels of cardiovascular risk factor independent of antecedent levels? The CARDIA study. Am J Epidemiol 2015;182:991–999. doi:10.1093/aje/kwv162
doi: 10.1093/aje/kwv162
Kok HS, van Asselt KM, van der Schouw YT, et al. Heart disease risk determines menopausal age rather than the reverse. J Am Coll Cardiol 2006;47:1976–1983. doi:10.1016/j.jacc.2005.12.066
doi: 10.1016/j.jacc.2005.12.066
Stanhewicz AE, Wenner MM, Stachenfeld NS. Sex differences in endothelial function important to vascular health and overall cardiovascular disease risk across the lifespan. Am J Physiol Heart Circ Physiol 2018;315:H1569–H1588. doi:10.1152/ajpheart.00396.2018
doi: 10.1152/ajpheart.00396.2018
Maas AH, Appelman YE. Gender differences in coronary heart disease. Neth Heart J 2010;18:598–602.
Stachowiak G, Pertynski T, Pertynska-Marczewska M. Metabolic disorders in menopause. Prz Menopauzalny 2015;14:59–64. doi:10.5114/pm.2015.50000
doi: 10.5114/pm.2015.50000
Hsieh C-C, Liao C-C, Liao Y-C, Hwang LS, Wu L-Y, Hsieh S-C. Proteomic changes associated with metabolic syndrome in a fructose-fed rat model. J Food Drug Anal 2016;24:754–761. doi:10.1016/j.jfda.2016.03.005
doi: 10.1016/j.jfda.2016.03.005
Lind L, Elmståhl S, Ingelsson E. Cardiometabolic proteins associated with metabolic syndrome. Metab Syndr Relat Disord 2019;17:272–279. doi:10.1089/met.2018.0123
doi: 10.1089/met.2018.0123
Kim SW, Choi J-W, Yun JW, et al. Proteomics approach to identify serum biomarkers associated with the progression of diabetes in Korean patients with abdominal obesity. PloS One 2019;14:e0222032. doi:10.1371/journal.pone.0222032
doi: 10.1371/journal.pone.0222032
Zhang L, Liu Y-Z, Zeng Y, et al. Network-based proteomic analysis for postmenopausal osteoporosis in Caucasian females. Proteomics 2016;16:12–28. doi:10.1002/pmic.201500005
doi: 10.1002/pmic.201500005
Williams SA, Kivimaki M, Langenberg C, et al. Plasma protein patterns as comprehensive indicators of health. Nat Med 2019;25:1851–1857. doi:10.1038/s41591-019-0665-2
doi: 10.1038/s41591-019-0665-2
Chan KC, Lucas DA, Hise D, et al. Analysis of the human serum proteome. Clin Proteomics 2004;1:101–225. doi:10.1385/CP:1:2:101
doi: 10.1385/CP:1:2:101
Yi J, Hu H, Shi P, et al. Differential analysis of quantitative proteome and acetyl-proteome profiling between premenopausal and postmenopausal ovarian tissues. Clin Proteomics 2018;15:36. doi:10.1186/s12014-018-9214-0
doi: 10.1186/s12014-018-9214-0
Gold EB. The timing of the age at which natural menopause occurs. Obstet Gynecol Clin North Am 2011;38:425–440. doi:10.1016/j.ogc.2011.05.002
doi: 10.1016/j.ogc.2011.05.002
Walker KA, Chen J, Zhang J, et al. Large-scale plasma proteomic analysis identifies proteins and pathways associated with dementia risk. Nat Aging 2021;1:473–489. doi:10.1038/s43587-021-00064-0
doi: 10.1038/s43587-021-00064-0
The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. The ARIC investigators. Am J Epidemiol 1989;129:687–702.
Wright JD, Folsom AR, Coresh J, et al. The ARIC (Atherosclerosis Risk In Communities) Study: JACC Focus Seminar 3/8. J Am Coll Cardiol 2021;77:2939–2959. doi:10.1016/j.jacc.2021.04.035
doi: 10.1016/j.jacc.2021.04.035
Rai AJ, Gelfand CA, Haywood BC, et al. HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics 2005;5:3262–3277. doi:10.1002/pmic.200401245
doi: 10.1002/pmic.200401245
Tin A, Yu B, Ma J, et al. Reproducibility and variability of protein analytes measured using a multiplexed modified aptamer assay. J Appl Lab Med 2019:jalm.2018.027086. doi:10.1373/jalm.2018.027086
doi: 10.1373/jalm.2018.027086
Lim SY, Lee JH, Welsh SJ, et al. Evaluation of two high-throughput proteomic technologies for plasma biomarker discovery in immunotherapy-treated melanoma patients. Biomark Res 2017;5:32. doi:10.1186/s40364-017-0112-9
doi: 10.1186/s40364-017-0112-9
Candia J, Cheung F, Kotliarov Y, et al. Assessment of variability in the SOMAscan assay. Sci Rep 2017;7:14248. doi:10.1038/s41598-017-14755-5
doi: 10.1038/s41598-017-14755-5
Chaturvedi AK, Kemp TJ, Pfeiffer RM, et al. Evaluation of multiplexed cytokine and inflammation marker measurements: a methodologic study. Cancer Epidemiol Biomarkers Prev 2011;20:1902–1911. doi:10.1158/1055-9965.EPI-11-0221
doi: 10.1158/1055-9965.EPI-11-0221
Filbin MR, Mehta A, Schneider AM, et al. Longitudinal proteomic analysis of severe COVID-19 reveals survival-associated signatures, tissue-specific cell death, and cell-cell interactions. Cell Rep Med 2021;2:100287. doi:10.1016/j.xcrm.2021.100287
doi: 10.1016/j.xcrm.2021.100287
Baecke JA, Burema J, Frijters JE. A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am J Clin Nutr 1982;36:936–942.
Inker LA, Schmid CH, Tighiouart H, et al; CKD-EPI Investigators. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 2012;367:20–29. doi:10.1056/NEJMoa1114248
doi: 10.1056/NEJMoa1114248
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 1995;57:289–300. Available at: http://www.jstor.org/stable/2346101 . Accessed December 9, 2020.
Krämer A, Green J, Pollard J Jr., Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 2013;30:523–530. doi:10.1093/bioinformatics/btt703
doi: 10.1093/bioinformatics/btt703
Gajbhiye R, Fung JN, Montgomery GW. Complex genetics of female fertility. NPJ Genom Med 2018;3:29. doi:10.1038/s41525-018-0068-1
doi: 10.1038/s41525-018-0068-1
Hashimoto S, Miwa M, Akasofu K, Nishida E. Changes in 40 serum proteins of post-menopausal women. Maturitas 1991;13:23–33.
Shi J, Wu L, Li B, et al. Transcriptome-wide association study identifies susceptibility loci and genes for age at natural menopause. Reprod Sci 2019;26:496–502. doi:10.1177/1933719118776788
doi: 10.1177/1933719118776788
Ruth KS, Murray A. Lessons from genome-wide association studies in reproductive medicine: menopause. Semin Reprod Med 2016;34:215–223. doi:10.1055/s-0036-1585404
doi: 10.1055/s-0036-1585404
Sarnowski C, Kavousi M, Isaacs S, et al. Genetic variants associated with earlier age at menopause increase the risk of cardiovascular events in women. Menopause 2018;25:451–457. doi:10.1097/GME.0000000000001017
doi: 10.1097/GME.0000000000001017
Laakkonen EK, Soliymani R, Karvinen S, et al. Estrogenic regulation of skeletal muscle proteome: a study of premenopausal women and postmenopausal MZ cotwins discordant for hormonal therapy. Aging Cell 2017;16:1276–1287. doi:10.1111/acel.12661
doi: 10.1111/acel.12661
Graumann J, Finkernagel F, Reinartz S, et al. Multi-platform affinity proteomics identify proteins linked to metastasis and immune suppression in ovarian cancer plasma. Front Oncol 2019;9:1150. doi:10.3389/fonc.2019.01150
doi: 10.3389/fonc.2019.01150
Smith JG, Gerszten RE. Emerging affinity-based proteomic technologies for large-scale plasma profiling in cardiovascular disease. Circulation 2017;135:1651–1664. doi:10.1161/CIRCULATIONAHA.116.025446
doi: 10.1161/CIRCULATIONAHA.116.025446
El Khoudary SR. Gaps, limitations and new insights on endogenous estrogen and follicle stimulating hormone as related to risk of cardiovascular disease in women traversing the menopause: a narrative review. Maturitas 2017;104:44–53. doi:10.1016/j.maturitas.2017.08.003
doi: 10.1016/j.maturitas.2017.08.003
Zhu D, Li X, Macrae VE, Simoncini T, Fu X. Extragonadal effects of follicle-stimulating hormone on osteoporosis and cardiovascular disease in women during menopausal transition. Trends Endocrinol Metab 2018;29:571–580. doi:10.1016/j.tem.2018.06.001
doi: 10.1016/j.tem.2018.06.001
Schmid BC, Reilly A, Oehler MK. Management of nonpregnant women with elevated human chorionic gonadotropin. Case Rep Obstet Gynecol 2013;2013:580709. doi:10.1155/2013/580709
doi: 10.1155/2013/580709
Merrill AE, Holmes DT, Severin N, Greene DN. Persistently elevated human chorionic gonadotropin in a menopausal woman. J Appl Lab Med 2019;1:315–318. doi:10.1373/jalm.2016.021428
doi: 10.1373/jalm.2016.021428
Wu T, Li Y, Liu B, et al. Expression of ferritin light chain (FTL) is elevated in glioblastoma, and FTL silencing inhibits glioblastoma cell proliferation via the GADD45/JNK pathway. PLoS One 2016;11:e0149361. doi:10.1371/journal.pone.0149361
doi: 10.1371/journal.pone.0149361
Vela D. Balance of cardiac and systemic hepcidin and its role in heart physiology and pathology. Lab Invest 2018;98:315–326. doi:10.1038/labinvest.2017.111
doi: 10.1038/labinvest.2017.111
Wilson NH, Key B. Neogenin: one receptor, many functions. Int J Biochem Cell Biol 2007;39:874–878. doi:10.1016/j.biocel.2006.10.023
doi: 10.1016/j.biocel.2006.10.023
Zhang Q, Liang F, Ke Y, et al. Overexpression of neogenin inhibits cell proliferation and induces apoptosis in human MDA-MB-231 breast carcinoma cells. Oncol Rep 2015;34:258–264. doi:10.3892/or.2015.4004
doi: 10.3892/or.2015.4004
Liu T, Li B, Zheng XF, et al. Chordin-like 1 improves osteogenesis of bone marrow mesenchymal stem cells through enhancing BMP4-SMAD pathway. Front Endocrinol 2019;10:360. doi:10.3389/fendo.2019.00360
doi: 10.3389/fendo.2019.00360
Randolph JF Jr., Sowers M, Bondarenko IV, Harlow SD, Luborsky JL, Little RJ. Change in estradiol and follicle-stimulating hormone across the early menopausal transition: effects of ethnicity and age. J Clin Endocrinol Metab 2004;89:1555–1561. doi:10.1210/jc.2003-031183
doi: 10.1210/jc.2003-031183
Zacharski LR, Shamayeva G, Chow BK, DePalma RG. Racial health disparities, and variant red cell and iron homeostasis. J Health Care Poor Underserved 2016;27:741–761. doi:10.1353/hpu.2016.0077
doi: 10.1353/hpu.2016.0077
Ye XD, He Y, Wang S, Wong GT, Irwin MG, Xia Z. Heart-type fatty acid binding protein (H-FABP) as a biomarker for acute myocardial injury and long-term post-ischemic prognosis. Acta Pharmacol Sin 2018;39:1155–1163. doi:10.1038/aps.2018.37
doi: 10.1038/aps.2018.37
Capulli M, Olstad OK, Onnerfjord P, et al. The C-terminal domain of chondroadherin: a new regulator of osteoclast motility counteracting bone loss. J Bone Miner Res 2014;29:1833–1846. doi:10.1002/jbmr.2206
doi: 10.1002/jbmr.2206
Wright NC, Looker AC, Saag KG, et al. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res 2014;29:2520–2526. doi:10.1002/jbmr.2269
doi: 10.1002/jbmr.2269
Soares AG, Kilpi F, Fraser A, et al. Longitudinal changes in reproductive hormones through the menopause transition in the Avon Longitudinal Study of Parents and Children (ALSPAC). Sci Rep 2020;10:21258. doi:10.1038/s41598-020-77871-9
doi: 10.1038/s41598-020-77871-9
Kinney A, Kline J, Kelly A, Reuss ML, Levin B. Smoking, alcohol and caffeine in relation to ovarian age during the reproductive years. Hum Reprod 2007;22:1175–1185. doi:10.1093/humrep/del496
doi: 10.1093/humrep/del496
Veenstra TD. Using a global proteomic approach to identify proteins affected by estrogen therapy. Genome Med 2009;1:58. doi:10.1186/gm58
doi: 10.1186/gm58
Katayama H, Paczesny S, Prentice R, et al. Application of serum proteomics to the Women's Health Initiative conjugated equine estrogens trial reveals a multitude of effects relevant to clinical findings. Genome Med 2009;1:47. doi:10.1186/gm47
doi: 10.1186/gm47
Prentice RL, Paczesny S, Aragaki A, et al. Novel proteins associated with risk for coronary heart disease or stroke among postmenopausal women identified by in-depth plasma proteome profiling. Genome Med 2010;2:48. doi:10.1186/gm169
doi: 10.1186/gm169
Pitteri SJ, Hanash SM, Aragaki A, et al. Postmenopausal estrogen and progestin effects on the serum proteome. Genome Med 2009;1:121. doi:10.1186/gm121
doi: 10.1186/gm121
Gericke B, Koebnick C, Reimann M, Forterre S, Franz Zunft HJ, Schweigert FJ. Influence of hormone replacement therapy on proteomic pattern in serum of postmenopausal women. Maturitas 2005;51:334–342. doi:10.1016/j.maturitas.2004.08.016
doi: 10.1016/j.maturitas.2004.08.016
Kim CH, Tworoger SS, Stampfer MJ, et al. Stability and reproducibility of proteomic profiles measured with an aptamer-based platform. Sci Rep 2018;8:8382. doi:10.1038/s41598-018-26640-w
doi: 10.1038/s41598-018-26640-w