Evolution of fungal phenotypic disparity.
Journal
Nature ecology & evolution
ISSN: 2397-334X
Titre abrégé: Nat Ecol Evol
Pays: England
ID NLM: 101698577
Informations de publication
Date de publication:
10 2022
10 2022
Historique:
received:
21
01
2022
accepted:
29
06
2022
pubmed:
16
8
2022
medline:
5
10
2022
entrez:
15
8
2022
Statut:
ppublish
Résumé
Organismal-grade multicellularity has been achieved only in animals, plants and fungi. All three kingdoms manifest phenotypically disparate body plans but their evolution has only been considered in detail for animals. Here we tested the general relevance of hypotheses on the evolutionary assembly of animal body plans by characterizing the evolution of fungal phenotypic variety (disparity). The distribution of living fungal form is defined by four distinct morphotypes: flagellated; zygomycetous; sac-bearing; and club-bearing. The discontinuity between morphotypes is a consequence of extinction, indicating that a complete record of fungal disparity would present a more homogeneous distribution of form. Fungal disparity expands episodically through time, punctuated by a sharp increase associated with the emergence of multicellular body plans. Simulations show these temporal trends to be non-random and at least partially shaped by hierarchical contingency. These trends are decoupled from changes in gene number, genome size and taxonomic diversity. Only differences in organismal complexity, characterized as the number of traits that constitute an organism, exhibit a meaningful relationship with fungal disparity. Both animals and fungi exhibit episodic increases in disparity through time, resulting in distributions of form made discontinuous by extinction. These congruences suggest a common mode of multicellular body plan evolution.
Identifiants
pubmed: 35970862
doi: 10.1038/s41559-022-01844-6
pii: 10.1038/s41559-022-01844-6
doi:
Banques de données
Dryad
['10.5061/dryad.wwpzgmsm9']
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1489-1500Subventions
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/T012773/1
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/N000919/1
Pays : United Kingdom
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Niklas, K. J. & Newman, S. A. The many roads to and from multicellularity. J. Exp. Bot. 71, 3247–3253 (2020).
pubmed: 31819969
doi: 10.1093/jxb/erz547
Maynard Smith, J. & Szathmary, E. The Major Transitions in Evolution (W. H. Freeman Spektrum, 1995).
Grosberg, R. K. & Strathmann, R. R. The evolution of multicellularity: a minor major transition?. Annu. Rev. Ecol. Evol. Syst. 38, 621–654 (2007).
doi: 10.1146/annurev.ecolsys.36.102403.114735
Erwin, D. H. Disparity: morphological pattern and developmental context. Palaeontology 50, 57–73 (2007).
doi: 10.1111/j.1475-4983.2006.00614.x
Foote, M. The evolution of morphological diversity. Annu. Rev. Ecol. Syst. 28, 129–152 (1997).
doi: 10.1146/annurev.ecolsys.28.1.129
Deline, B. et al. Evolution of metazoan morphological disparity. Proc. Natl Acad. Sci. USA 115, E8909–E8918 (2018).
Hughes, M., Gerber, S. & Wills, M. A. Clades reach highest morphological disparity early in their evolution. Proc. Natl Acad. Sci. USA 110, 13875–13879 (2013).
pubmed: 23884651
pmcid: 3752257
doi: 10.1073/pnas.1302642110
Kües, U., Khonsuntia, W. & Subba, S. Complex fungi. Fungal Biol. Rev. 32, 205–218 (2018).
doi: 10.1016/j.fbr.2018.08.001
Blackwell, M. The fungi: 1, 2, 3 … 5.1 million species? Am. J. Bot. 98, 426–438 (2011).
pubmed: 21613136
doi: 10.3732/ajb.1000298
Li, Y. et al. A genome-scale phylogeny of the kingdom Fungi. Curr. Biol. 31, 1653–1665.e5 (2021).
pubmed: 33607033
pmcid: 8347878
doi: 10.1016/j.cub.2021.01.074
Chang, Y. et al. Genome-scale phylogenetic analyses confirm Olpidium as the closest living zoosporic fungus to the non-flagellated, terrestrial fungi. Sci. Rep. 11, 3217 (2021).
pubmed: 33547391
pmcid: 7865070
doi: 10.1038/s41598-021-82607-4
James, T. Y., Stajich, J. E., Hittinger, C. T. & Rokas, A. Toward a fully resolved fungal tree of life. Annu. Rev. Microbiol. 74, 291–313 (2020).
pubmed: 32660385
doi: 10.1146/annurev-micro-022020-051835
Naranjo-Ortiz, M. A. & Gabaldón, T. Fungal evolution: diversity, taxonomy and phylogeny of the Fungi. Biol. Rev. Camb. Philos. Soc. 94, 2101–2137 (2019).
pubmed: 31659870
doi: 10.1111/brv.12550
Celio, G. J., Padamsee, M., Dentinger, B. T. M., Bauer, R. & McLaughlin, D. J. Assembling the Fungal Tree of Life: constructing the structural and biochemical database. Mycologia 98, 850–859 (2006).
pubmed: 17486962
doi: 10.1080/15572536.2006.11832615
Gerber, S. Use and misuse of discrete character data for morphospace and disparity analyses. Palaeontology 62, 305–319 (2019).
doi: 10.1111/pala.12407
Smith, T. J., Puttick, M. N., O’Reilly, J. E., Pisani, D. & Donoghue, P. C. J. Phylogenetic sampling affects evolutionary patterns of morphological disparity. Palaeontology 64, 765–787 (2021).
doi: 10.1111/pala.12569
Adl, S. M. et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66, 4–119 (2019).
pubmed: 30257078
pmcid: 6492006
doi: 10.1111/jeu.12691
Berbee, M. L. et al. Genomic and fossil windows into the secret lives of the most ancient fungi. Nat. Rev. Microbiol. 18, 717–730 (2020).
pubmed: 32908302
doi: 10.1038/s41579-020-0426-8
Taylor, T. N., Krings, M. & Taylor, E. Fossil Fungi (Elsevier, 2015).
McShea, D. W. & Brandon, R. N. Biology’s First Law: the Tendency for Diversity and Complexity to Increase in Evolutionary Systems (Univ. of Chicago Press, 2010).
McShea, D. W. Metazoan complexity and evolution: is there a trend? Evolution 50, 477–492 (1996).
pubmed: 28568940
Ispolatov, I., Alekseeva, E. & Doebeli, M. Competition-driven evolution of organismal complexity. PLoS Comput. Biol. 15, e1007388 (2019).
pubmed: 31581239
pmcid: 6793884
doi: 10.1371/journal.pcbi.1007388
Hobern, D. et al. Towards a global list of accepted species VI: The Catalogue of Life checklist. Org. Divers. Evol. 21, 677–690 (2021).
doi: 10.1007/s13127-021-00516-w
Bauer, R. et al. Entorrhizomycota: a new fungal phylum reveals new perspectives on the evolution of Fungi. PLoS ONE 10, e0128183 (2015).
pubmed: 26200112
pmcid: 4511587
doi: 10.1371/journal.pone.0128183
Jones, M. D. M. et al. Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474, 200–203 (2011).
pubmed: 21562490
doi: 10.1038/nature09984
Yoshida, M., Nakayama, T. & Inouye, I. Nuclearia thermophila sp. nov. (Nucleariidae), a new nucleariid species isolated from Yunoko Lake in Nikko (Japan). Eur. J. Protistol. 45, 147–155 (2009).
pubmed: 19157810
doi: 10.1016/j.ejop.2008.09.004
Hibbett, D. S. et al. A higher-level phylogenetic classification of the Fungi. Mycol. Res. 111, 509–547 (2007).
pubmed: 17572334
doi: 10.1016/j.mycres.2007.03.004
Grigoriev, I. V. et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 42, D699–D704 (2014).
pubmed: 24297253
doi: 10.1093/nar/gkt1183
Guillerme, T. & Cooper, N. Time for a rethink: time sub-sampling methods in disparity-through-time analyses. Palaeontology 61, 481–493 (2018).
doi: 10.1111/pala.12364
Nagy, L. G., Kovács, G. M. & Krizsán, K. Complex multicellularity in fungi: evolutionary convergence, single origin, or both? Biol. Rev. Camb. Philos. Soc. 93, 1778–1794 (2018).
pubmed: 29675836
doi: 10.1111/brv.12418
Whittaker, R. H. New concepts of kingdoms of organisms: evolutionary relations are better represented by new classifications than by the traditional two kingdoms. Science 163, 150–160 (1969).
pubmed: 5762760
doi: 10.1126/science.163.3863.150
Naranjo-Ortiz, M. A. & Gabaldón, T. Fungal evolution: cellular, genomic and metabolic complexity. Biol. Rev. Camb. Philos. Soc. 95, 1198–1232 (2020).
pubmed: 32301582
pmcid: 7539958
doi: 10.1111/brv.12605
Nguyen, T. A. et al. Innovation and constraint leading to complex multicellularity in the Ascomycota. Nat. Commun. 8, 14444 (2017).
pubmed: 28176784
pmcid: 5309816
doi: 10.1038/ncomms14444
Briggs, D. E., Fortey, R. A. & Wills, M. A. Morphological disparity in the Cambrian. Science 256, 1670–1673 (1992).
pubmed: 17841089
doi: 10.1126/science.256.5064.1670
Gould, S. J. Wonderful Life: the Burgess Shale and the Nature of History (Hutchinson Radius, 1990).
Wan, J. et al. Decoupling of morphological disparity and taxonomic diversity during the end-Permian mass extinction. Paleobiology 47, 402–417 (2021).
doi: 10.1017/pab.2020.57
Grossnickle, D. M. & Newham, E. Therian mammals experience an ecomorphological radiation during the Late Cretaceous and selective extinction at the K-Pg boundary. Proc. Biol. Sci. 283, 20160256 (2016).
pmcid: 4920311
Ruta, M., Angielczyk, K. D., Fröbisch, J. & Benton, M. J. Decoupling of morphological disparity and taxic diversity during the adaptive radiation of anomodont therapsids. Proc. Biol. Sci. 280, 20131071 (2013).
pubmed: 23945681
pmcid: 3757962
Bapst, D. W., Bullock, P. C., Melchin, M. J., Sheets, H. D. & Mitchell, C. E. Graptoloid diversity and disparity became decoupled during the Ordovician mass extinction. Proc. Natl Acad. Sci. USA 109, 3428–3433 (2012).
Guillerme, T. et al. Disparities in the analysis of morphological disparity. Biol. Lett. 16, 20200199 (2020).
pubmed: 32603646
pmcid: 7423048
doi: 10.1098/rsbl.2020.0199
Guillerme, T., Puttick, M. N., Marcy, A. E. & Weisbacker, V. Shifting spaces: which disparity or dissimilarity measurement best summarize occupancy in multidimensional spaces? Ecol. Evol. 10, 7261–7275 (2020).
pubmed: 32760527
pmcid: 7391566
doi: 10.1002/ece3.6452
Svardal, H., Rueffler, C. & Doebeli, M. Organismal complexity and the potential for evolutionary diversification. Evolution 68, 3248–3259 (2014).
pubmed: 25087681
doi: 10.1111/evo.12492
Tenaillon, O., Silander, O. K., Uzan, J.-P. & Chao, L. Quantifying organismal complexity using a population genetic approach. PLoS ONE 2, e217 (2007).
pubmed: 17299597
pmcid: 1790863
doi: 10.1371/journal.pone.0000217
Valentine, J. W., Collins, A. G. & Meyer, C. P. Morphological complexity increase in metazoans. Paleobiology 20, 131–142 (1994).
doi: 10.1017/S0094837300012641
Yang, J., Lusk, R. & Li, W.-H. Organismal complexity, protein complexity, and gene duplicability. Proc. Natl Acad. Sci. USA 100, 15661–15665 (2003).
pubmed: 14660792
pmcid: 307624
doi: 10.1073/pnas.2536672100
Prochnik, S. E. et al. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 329, 223–226 (2010).
pubmed: 20616280
pmcid: 2993248
doi: 10.1126/science.1188800
Hobern, D. et al. Towards a global list of accepted species VI: the Catalogue of Life checklist. Org. Divers. Evol. 21, 677–690 (2021).
doi: 10.1007/s13127-021-00516-w
Guillerme, T. dispRity: a modular R package for measuring disparity. Methods Ecol. Evol. 9, 1755–1763 (2018).
doi: 10.1111/2041-210X.13022
Tedersoo, L. et al. High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Divers. 90, 135–159 (2018).
doi: 10.1007/s13225-018-0401-0
He, M.-Q. et al. Notes, outline and divergence times of Basidiomycota. Fungal Divers. 99, 105–367 (2019).
doi: 10.1007/s13225-019-00435-4
Beimforde, C. et al. Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data. Mol. Phylogenet. Evol. 78, 386–398 (2014).
pubmed: 24792086
doi: 10.1016/j.ympev.2014.04.024
Bollback, J. P. SIMMAP: stochastic character mapping of discrete traits on phylogenies. BMC Bioinformatics 7, 88 (2006).
pubmed: 16504105
pmcid: 1403802
doi: 10.1186/1471-2105-7-88
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
doi: 10.1111/j.2041-210X.2011.00169.x
O’Reilly, J. E. et al. Bayesian methods outperform parsimony but at the expense of precision in the estimation of phylogeny from discrete morphological data. Biol. Lett. 12, 20160081 (2016).
pubmed: 27095266
pmcid: 4881353
doi: 10.1098/rsbl.2016.0081
Sanderson, M. J. & Donoghue, M. J. Patterns of variation in levels of homoplasy. Evolution 43, 1781–1795 (1989).
pubmed: 28564338
doi: 10.1111/j.1558-5646.1989.tb02626.x
Lloyd, G. T. Estimating morphological diversity and tempo with discrete character-taxon matrices: implementation, challenges, progress, and future directions. Biol. J. Linn. Soc. Lond. 118, 131–151 (2016).
doi: 10.1111/bij.12746
Gower, J. C. General coefficient of similarity and some of its properties. Biometrics 27, 857–871 (1971).
doi: 10.2307/2528823
Anderson, P. S. L. & Friedman, M. Using cladistic characters to predict functional variety: experiments using early gnathostomes. J. Vertebr. Paleontol. 32, 1254–1270 (2012).
doi: 10.1080/02724634.2012.694386
Wills, M. A. in Fossils, Phylogeny, and Form: an Analytical Approach (eds Adrain, J. M. et al.) 55–144 (Springer, 2001).
Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
pubmed: 30016406
doi: 10.1093/bioinformatics/bty633
Clarke, K. R. & Warwick, R. M. Change in Marine Communities: an Approach to Statistical Analysis and Interpretation (PRIMER-E Ltd, 2001).
Cailliez, F. The analytical solution of the additive constant problem. Psychometrika 48, 305–308 (1983).
doi: 10.1007/BF02294026
Smith, T. J. & Donoghue, P. C. J. Data from: Evolution of fungal phenotypic disparity, Dryad, Dataset (2022). https://doi.org/10.5061/dryad.wwpzgmsm9
Letcher, P. M. & Powell, M. J. A taxonomic summary and revision of Rozella (Cryptomycota). IMA Fungus 9, 383–399 (2018).
pubmed: 30622888
pmcid: 6317583
doi: 10.5598/imafungus.2018.09.02.09
James, T., Porter, T. M. & Martin, W. W. in Systematics and Evolution. The Mycota (A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research) Vol. 7A (eds McLaughlin, D. J. & Spatafora, J. W.), 177–207 (Springer, 2014).
Seto, K., Van den Wyngaert, S., Degawa, Y. & Kagami, M. Taxonomic revision of the genus Zygorhizidium: Zygorhizidiales and Zygophlyctidales ord. nov. (Chytridiomycetes, Chytridiomycota). Fungal Syst. Evol. 5, 17–38 (2020).
pubmed: 32467913
doi: 10.3114/fuse.2020.05.02
Joshi, A. et al. Liebetanzomyces polymorphus gen. et sp. nov., a new anaerobic fungus (Neocallimastigomycota) isolated from the rumen of a goat. MycoKeys 89–110 (2018).
Błaszkowski, J. et al. Dominikia bonfanteae and Glomus atlanticum, two new species in the Glomeraceae (phylum Glomeromycota) with molecular phylogenies reconstructed from two unlinked loci. Mycol. Prog. 20, 131–148 (2021).
doi: 10.1007/s11557-020-01659-4
Walther, G., Wagner, L. & Kurzai, O. Outbreaks of Mucorales and the species involved. Mycopathologia 185, 765–781 (2020).
pubmed: 31734800
Reynolds, N. K. et al. Phylogenetic and morphological analyses of the mycoparasitic genus Piptocephalis. Mycologia 111, 54–68 (2019).
pubmed: 30714887
doi: 10.1080/00275514.2018.1538439