Efficient genome editing in wild strains of mice using the i-GONAD method.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
15 08 2022
Historique:
received: 18 04 2022
accepted: 30 07 2022
entrez: 15 8 2022
pubmed: 16 8 2022
medline: 18 8 2022
Statut: epublish

Résumé

Wild mouse strains have been used for many research studies, because of the high level of inter-strain genetic and phenotypic variations in them, in addition to the characteristic phenotype maintained from wild mice. However, since application of the current genetic engineering method on wild strains is not easy, there are limited studies that have attempted to apply gene modification techniques in wild strains. Recently, i-GONAD, a new method for genome editing that does not involve any ex vivo manipulation of unfertilized or fertilized eggs has been reported. We applied i-GONAD method for genome editing on a series of wild strains and showed that genome editing is efficiently possible using this method. We successfully made genetically engineered mice in seven out of the nine wild strains. Moreover, we believe that it is still possible to apply milder conditions and improve the efficiencies for the remaining two strains. These results will open avenues for studying the genetic basis of various phenotypes that are characteristic to wild strains. Furthermore, applying i-GONAD will be also useful for other mouse resources in which genetic manipulation is difficult using the method of microinjection into fertilized eggs.

Identifiants

pubmed: 35970947
doi: 10.1038/s41598-022-17776-x
pii: 10.1038/s41598-022-17776-x
pmc: PMC9378668
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

13821

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2022. The Author(s).

Références

PLoS One. 2014 Dec 03;9(12):e114305
pubmed: 25470728
Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):9919-23
pubmed: 12114535
Sci Rep. 2015 Jun 22;5:11406
pubmed: 26096991
Behav Genet. 2004 Nov;34(6):621-30
pubmed: 15520518
Nucleic Acids Res. 2018 Jul 2;46(W1):W242-W245
pubmed: 29762716
Pain. 2003 Sep;105(1-2):169-75
pubmed: 14499433
Genome Biol. 2018 Feb 26;19(1):25
pubmed: 29482575
BMC Biotechnol. 2018 Apr 2;18(1):19
pubmed: 29606116
Exp Anim. 2009 Apr;58(2):123-34
pubmed: 19448335
Mamm Genome. 1998 Jan;9(1):15-9
pubmed: 9434939
Behav Genet. 2011 Sep;41(5):716-23
pubmed: 21461901
Physiol Behav. 2000 Dec;71(5):509-16
pubmed: 11239669
Dev Growth Differ. 2021 Oct;63(8):439-447
pubmed: 34432885
PLoS One. 2011;6(7):e22093
pubmed: 21818297
Folia Biol (Praha). 2000;46(1):31-41
pubmed: 10730880
Gene. 2005 Apr 11;349:107-19
pubmed: 15777662
Mamm Genome. 2002 Aug;13(8):411-5
pubmed: 12226705
Genes Brain Behav. 2021 Mar;20(3):e12721
pubmed: 33314580
Biol Reprod. 2012 May 31;86(5):167, 1-7
pubmed: 22337332
Cell. 2013 May 9;153(4):910-8
pubmed: 23643243
Nat Biotechnol. 2014 Apr;32(4):347-55
pubmed: 24584096
Behav Genet. 2010 May;40(3):366-76
pubmed: 19936911
Mamm Genome. 2010 Oct;21(9-10):477-85
pubmed: 20886216
Pharmacogenet Genomics. 2008 Nov;18(11):927-36
pubmed: 18854775
Brain Res Bull. 2002 Jan 1;57(1):49-55
pubmed: 11827737
Cell. 2017 Nov 16;171(5):1015-1028.e13
pubmed: 29056339
Mamm Genome. 2000 Aug;11(8):664-70
pubmed: 10920237
Cell Stem Cell. 2013 Dec 5;13(6):659-62
pubmed: 24315440
Cell. 2013 Sep 12;154(6):1370-9
pubmed: 23992847
Sci Rep. 2017 Feb 14;7:42476
pubmed: 28195201
Front Neurosci. 2014 Jun 11;8:156
pubmed: 24966813
Nat Commun. 2014 Aug 05;5:4569
pubmed: 25090970
Proc Natl Acad Sci U S A. 2020 Feb 4;117(5):2513-2518
pubmed: 31964830
Behav Processes. 1994 Jun;32(1):79-86
pubmed: 24925115
Sci Rep. 2017 Jul 4;7(1):4607
pubmed: 28676693
Genes Brain Behav. 2003 Apr;2(2):71-9
pubmed: 12884964
Behav Genet. 2006 Sep;36(5):763-74
pubmed: 16402282
Genes Brain Behav. 2013 Nov;12(8):760-70
pubmed: 24034605
Virology. 2009 May 25;388(1):121-7
pubmed: 19329137
Mamm Genome. 2009 Jan;20(1):14-20
pubmed: 19082856

Auteurs

Yuji Imai (Y)

Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan.

Akira Tanave (A)

Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Osaka, 565-0871, Japan.

Makoto Matsuyama (M)

Division of Molecular Genetics, Shigei Medical Research Institute, Okayama, 701-0202, Japan.

Tsuyoshi Koide (T)

Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan. tkoide@nig.ac.jp.
Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, 411-8540, Japan. tkoide@nig.ac.jp.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH