Nerve regeneration using the Bio 3D nerve conduit fabricated with spheroids.


Journal

Journal of artificial organs : the official journal of the Japanese Society for Artificial Organs
ISSN: 1619-0904
Titre abrégé: J Artif Organs
Pays: Japan
ID NLM: 9815648

Informations de publication

Date de publication:
Dec 2022
Historique:
received: 12 05 2022
accepted: 06 08 2022
pubmed: 16 8 2022
medline: 11 11 2022
entrez: 15 8 2022
Statut: ppublish

Résumé

Autologous nerve grafting is the gold standard method for peripheral nerve injury with defects. Artificial nerve conduits have been developed to prevent morbidity at the harvest site. However, the artificial conduit regeneration capacity is not sufficient. A Bio 3D printer is technology that creates three-dimensional tissue using only cells. Using this technology, a three-dimensional nerve conduit (Bio 3D nerve conduit) was created from several cell spheroids. We reported the first application of the Bio 3D nerve conduit for peripheral nerve injury. A Bio 3D nerve conduit that was created from several cells promotes peripheral nerve regeneration. The Bio 3D nerve conduit may be useful clinically to treat peripheral nerve defects.

Identifiants

pubmed: 35970971
doi: 10.1007/s10047-022-01358-9
pii: 10.1007/s10047-022-01358-9
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

289-297

Informations de copyright

© 2022. The Japanese Society for Artificial Organs.

Références

Griffin JW, Hogan MV, Chhabra AB, Deal DN. Peripheral nerve repair and reconstruction. J Bone Jt Surg. 2013;95:2144–51. https://doi.org/10.2106/JBJS.L.00704 .
Cuevas P, Carceller F, Dujovny M, Garcia-Gómez I, Cuevas B, González-Corrochano R, Diaz-González D, Reimers D. Peripheral nerve regeneration by bone marrow stromal cells. Neurol Res. 2002;24:634–8. https://doi.org/10.1179/016164102101200564 .
doi: 10.1179/016164102101200564 pubmed: 12392196
Cuevas P, Carceller F, Garcia-Gómez I, Yan M, Dujovny M. Bone marrow stromal cell implantation for peripheral nerve repair. Neurol Res. 2004;26:230–2. https://doi.org/10.1179/016164104225013897 .
doi: 10.1179/016164104225013897 pubmed: 15072644
Chen X, Wang XD, Chen G, Lin WW, Yao J, Gu XS. Study of in vivo differentiation of rat bone marrow stromal cells into schwann cell-like cells. Microsurgery. 2006;26:111–5. https://doi.org/10.1002/micr.20184 .
doi: 10.1002/micr.20184 pubmed: 16453290
Chen CJ, Ou YC, Liao SL, Chen WY, Chen SY, Wu CW, Wang CC, Wang WY, Huang YS, Hsu SH. Transplantation of bone marrow stromal cells for peripheral nerve repair. Exp Neurol. 2007;204:443–53. https://doi.org/10.1016/j.expneurol.2006.12.004 .
doi: 10.1016/j.expneurol.2006.12.004 pubmed: 17222827
Yamakawa T, Kakinoki R, Ikeguchi R, Nakayama K, Morimoto Y, Nakamura T. Nerve regeneration promoted in a tube with vascularity containing bone marrow-derived cells. Cell Transplant. 2007;16:811–22. https://doi.org/10.3727/000000007783465226 .
doi: 10.3727/000000007783465226 pubmed: 18088001
Wang D, Liu XL, Zhu JK, Jiang L, Hu J, Zhang Y, Yang LM, Wang HG, Yi JH. Bridging small-gap peripheral nerve defects using acellular nerve allograft implanted with autologous bone marrow stromal cells in primates. Brain Res. 2008;1188:44–53. https://doi.org/10.1016/j.brainres.2007.09.098 .
doi: 10.1016/j.brainres.2007.09.098 pubmed: 18061586
Nijhuis TH, Brzezicki G, Klimczak A, Siemionow M. Isogenic venous graft supported with bone marrow stromal cells as a natural conduit for bridging a 20 mm nerve gap. Microsurgery. 2010;30:639–45. https://doi.org/10.1002/micr.20818 .
doi: 10.1002/micr.20818 pubmed: 20842703
Ding F, Wu J, Yang Y, Hu W, Zhu Q, Tang X, Liu J, Gu X. Use of tissue-engineered nerve grafts consisting of a chitosan/poly (lactic-co-glycolic acid)-based scaffold included with bone marrow mesenchymal cells for bridging 50-mm dog sciatic nerve gaps. Tissue Eng Part A. 2010;16:3779–90. https://doi.org/10.1089/ten.TEA.2010.0299 .
doi: 10.1089/ten.TEA.2010.0299 pubmed: 20666610
Siemionow M, Duggan W, Brzezicki G, Klimczak A, Grykien C, Gatherwright J, Nair D. Peripheral nerve defect repair with epineural tubes supported with bone marrow stromal cells: a preliminary report. Ann Plast Surg. 2011;67:73–84. https://doi.org/10.1097/SAP.0b013e318223c2db .
doi: 10.1097/SAP.0b013e318223c2db pubmed: 21629045
Jesuraj NJ, Santosa KB, Newton P, Liu Z, Hunter DA, Mackinnon SE, Sakiyama-Elbert SE, Johnson PJ. A systematic evaluation of Schwann cell injection into acellular cold-preserved nerve grafts. J Neurosci Methods. 2011;197:209–15. https://doi.org/10.1016/j.jneumeth.2011.02.015 .
doi: 10.1016/j.jneumeth.2011.02.015 pubmed: 21354206 pmcid: 3081933
Walsh SK, Kumar R, Grochmal JK, Kemp SW, Forden J, Midha R. Fate of stem cell transplants in peripheral nerves. Stem Cell Res. 2012;8:226–38. https://doi.org/10.1016/j.scr.2011.11.004 .
doi: 10.1016/j.scr.2011.11.004 pubmed: 22265742
Nakayama K. Development of a scaffold-free 3D Biofabrication system "Kenzan method". In: Kenzan method for scaffold-free biofabrication. Springer Nature Switzerland AG; 2021. p. 1–15.
Itoh M, Nakayama K, Noguchi R, Kamohara K, Furukawa K, Uchihashi K, Toda S, Oyama J, Node K, Morita S. Scaffold-free tubular tissues created by a bio-3D printer undergo remodeling and endothelialization when implanted in rat aortae. PLoS ONE. 2015;10: e0136681. https://doi.org/10.1371/journal.pone.0136681 .
doi: 10.1371/journal.pone.0136681 pubmed: 26325298 pmcid: 4556622
Ishihara K, Nakayama K, Akieda S, Matsuda S, Iwamoto Y. Simultaneous regeneration of full-thickness cartilage and subchondral bone defects in vivo using a three-dimensional scaffold-free autologous construct derived from high-density bone marrow-derived mesenchymal stem cells. J Orthop Surg Res. 2014;9:98. https://doi.org/10.1186/s13018-014-0098-z .
doi: 10.1186/s13018-014-0098-z pubmed: 25312099 pmcid: 4200118
Machino R, Matsumoto K, Taniguchi D, Tsuchiya T, Takeoka Y, Taura Y, Moriyama M, Tetsuo T, Oyama S, Takagi K, Miyazaki T, Hatachi G, Doi R, Shimoyama K, Matsuo N, Yamasaki N, Nakayama K, Nagayasu T. Replacement of rat tracheas by layered, trachea-like, scaffold-free structures of human cells using a Bio-3D printing system. Adv Healthcare Mater. 2019;8: e1800983. https://doi.org/10.1002/adhm.201800983 .
doi: 10.1002/adhm.201800983
Yurie H, Ikeguchi R, Aoyama T, Kaizawa Y, Tajino J, Ito A, Ohta S, Oda H, Takeuchi H, Akieda S, Tsuji M, Nakayama K, Matsuda S. The efficacy of a scaffold-free Bio 3D conduit developed from human fibroblasts on peripheral nerve regeneration in a rat sciatic nerve model. PLoS ONE. 2017;12: e0171448. https://doi.org/10.1371/journal.pone.0171448 .
doi: 10.1371/journal.pone.0171448 pubmed: 28192527 pmcid: 5305253
Pan D, Mackinnon SE, Wood MD. Advances in the repair of segmental nerve injuries and trends in reconstruction. Muscle Nerve. 2020;61:726–39. https://doi.org/10.1002/mus.26797 .
doi: 10.1002/mus.26797 pubmed: 31883129 pmcid: 7230025
Parrinello S, Napoli I, Ribeiro S, Wingfield Digby P, Fedorova M, Parkinson DB, Doddrell RD, Nakayama M, Adams RH, Lloyd AC. EphB signaling directs peripheral nerve regeneration through Sox2-dependent Schwann cell sorting. Cell. 2010;143:145–55. https://doi.org/10.1016/j.cell.2010.08.039 .
doi: 10.1016/j.cell.2010.08.039 pubmed: 20869108
Yurie H, Ikeguchi R, Aoyama T, Ito A, Tanaka M, Noguchi T, Oda H, Takeuchi H, Mitsuzawa S, Ando M, Yoshimoto K, Akieda S, Nakayama K, Matsuda S. Mechanism of peripheral nerve regeneration using a Bio 3D conduit derived from normal human dermal fibroblasts. J Reconstr Microsurg. 2021;37:357–64. https://doi.org/10.1055/s-0040-1716855 .
doi: 10.1055/s-0040-1716855 pubmed: 32957155
Thoma EC, Merkl C, Heckel T, Haab R, Knoflach F, Nowaczyk C, Flint N, Jagasia R, Jensen Zoffmann S, Truong HH, Petitjean P, Jessberger S, Graf M, Iacone R. Chemical conversion of human fibroblasts into functional Schwann cells. Stem Cell Rep. 2014;3:539–47. https://doi.org/10.1016/j.stemcr.2014.07.014 .
doi: 10.1016/j.stemcr.2014.07.014
Ando M, Ikeguchi R, Aoyama T, Tanaka M, Noguchi T, Miyazaki Y, Akieda S, Nakayama K, Matsuda S. Long-term outcome of sciatic nerve regeneration using Bio3D conduit fabricated from human fibroblasts in a rat sciatic nerve model. Cell Transplant. 2021;30:9636897211021357. https://doi.org/10.1177/09636897211021357 .
Takeuchi H, Ikeguchi R, Aoyama T, Oda H, Yurie H, Mitsuzawa S, Tanaka M, Ohta S, Akieda S, Miyazaki Y, Nakayama K, Matsuda S. A scaffold-free Bio 3D nerve conduit for repair of a 10-mm peripheral nerve defect in the rats. Microsurgery. 2020;40:207–16. https://doi.org/10.1002/micr.30533 .
doi: 10.1002/micr.30533 pubmed: 31724780
Mitsuzawa S, Ikeguchi R, Aoyama T, Takeuchi H, Yurie H, Oda H, Ohta S, Ushimaru M, Ito T, Tanaka M, Kunitomi Y, Tsuji M, Akieda S, Nakayama K, Matsuda S. The efficacy of a scaffold-free Bio 3D conduit developed from autologous dermal fibroblasts on peripheral nerve regeneration in a canine ulnar nerve injury model: a preclinical proof-of-concept study. Cell Transplant. 2019;28:1231–41. https://doi.org/10.1177/0963689719855346 .
doi: 10.1177/0963689719855346 pubmed: 31185736 pmcid: 6767885
Yurie H, Ikeguchi R, Aoyama T, Tanaka M, Oda H, Takeuchi H, Mitsuzawa S, Ando M, Yoshimoto K, Noguchi T, Akieda S, Nakayama K, Matsuda S. Bio 3D conduits derived from bone marrow stromal cells promote peripheral nerve regeneration. Cell Transplant. 2020;29:963689720951551. https://doi.org/10.1177/0963689720951551 .
doi: 10.1177/0963689720951551 pubmed: 32830545
Kaizawa Y, Kakinoki R, Ikeguchi R, Ohta S, Noguchi T, Takeuchi H, Oda H, Yurie H, Matsuda S. A Nerve conduit containing a vascular bundle and implanted with bone marrow stromal cells and decellularized allogenic nerve matrix. Cell Transplant. 2017;26:215–28. https://doi.org/10.3727/096368916X692951 .
doi: 10.3727/096368916X692951 pubmed: 27657936 pmcid: 5657762
Tanaka H, Kakinoki R, Kaizawa Y, Yurie H, Ikeguchi R, Akagi M. Bone marrow-derived mesenchymal stem cells transplanted into a vascularized biodegradable tube containing decellularized allogenic nerve basal laminae promoted peripheral nerve regeneration; can it be an alternative of autologous nerve graft? PLoS ONE. 2021;16: e0254968. https://doi.org/10.1371/journal.pone.0254968 .
doi: 10.1371/journal.pone.0254968 pubmed: 34464381 pmcid: 8407554
Kashani IR, Golipoor Z, Akbari M, Mahmoudi R, Azari S, Shirazi R, Bayat M, Ghasemi S. Schwann-like cell differentiation from rat bone marrow stem cells. Arch Med Sci. 2011;7:45–52. https://doi.org/10.5114/aoms.2011.20603 .
doi: 10.5114/aoms.2011.20603 pubmed: 22291732 pmcid: 3258698
Mitsuzawa S, Zhao C, Ikeguchi R, Aoyama T, Kamiya D, Ando M, Takeuchi H, Akieda S, Nakayama K, Matsuda S, Ikeya M. Pro-angiogenic scaffold-free Bio three-dimensional conduit developed from human induced pluripotent stem cell-derived mesenchymal stem cells promotes peripheral nerve regeneration. Sci Rep. 2020;10:12034. https://doi.org/10.1038/s41598-020-68745-1 .
doi: 10.1038/s41598-020-68745-1 pubmed: 32694698 pmcid: 7374629
Ikeguchi R, Aoyama T, Yurie H, Takeuchi H, Mitsuzawa S, Zhao C, Ando M, Yoshimoto K, Miyazaki Y, Noguchi T, Akieda S, Ikeya M, Nakayama K, Matsuda S. Nerve regeneration using Bio 3D printer. Jpn J Artif Organs. 2021;50:94–7.

Auteurs

Ryosuke Ikeguchi (R)

Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan. ikeguchir@me.com.

Tomoki Aoyama (T)

Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

Mai Tanaka (M)

Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

Takashi Noguchi (T)

Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.

Maki Ando (M)

Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.

Koichi Yoshimoto (K)

Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.

Daichi Sakamoto (D)

Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.

Terunobu Iwai (T)

Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.

Yudai Miyazaki (Y)

Cyfuse Biomedical K.K., Tokyo, Japan.

Shizuka Akieda (S)

Cyfuse Biomedical K.K., Tokyo, Japan.

Makoto Ikeya (M)

Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.

Koichi Nakayama (K)

Department of Regenerative Medicine and Biomedical Engineering, Faculty of Medicine, Saga University, Saga, Japan.

Shuichi Matsuda (S)

Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH