A Feature-Encoded Physics-Informed Parameter Identification Neural Network for Musculoskeletal Systems.
data-driven computing
feature-encoding
musculoskeletal system
parameter identification
physics-informed neural networks
surface electromyography
Journal
Journal of biomechanical engineering
ISSN: 1528-8951
Titre abrégé: J Biomech Eng
Pays: United States
ID NLM: 7909584
Informations de publication
Date de publication:
01 12 2022
01 12 2022
Historique:
received:
01
05
2022
pubmed:
17
8
2022
medline:
23
9
2022
entrez:
16
8
2022
Statut:
ppublish
Résumé
Identification of muscle-tendon force generation properties and muscle activities from physiological measurements, e.g., motion data and raw surface electromyography (sEMG), offers opportunities to construct a subject-specific musculoskeletal (MSK) digital twin system for health condition assessment and motion prediction. While machine learning approaches with capabilities in extracting complex features and patterns from a large amount of data have been applied to motion prediction given sEMG signals, the learned data-driven mapping is black-box and may not satisfy the underlying physics and has reduced generality. In this work, we propose a feature-encoded physics-informed parameter identification neural network (FEPI-PINN) for simultaneous prediction of motion and parameter identification of human MSK systems. In this approach, features of high-dimensional noisy sEMG signals are projected onto a low-dimensional noise-filtered embedding space for the enhancement of forwarding dynamics prediction. This FEPI-PINN model can be trained to relate sEMG signals to joint motion and simultaneously identify key MSK parameters. The numerical examples demonstrate that the proposed framework can effectively identify subject-specific muscle parameters and the trained physics-informed forward-dynamics surrogate yields accurate motion predictions of elbow flexion-extension motion that are in good agreement with the measured joint motion data.
Identifiants
pubmed: 35972808
pii: 1145509
doi: 10.1115/1.4055238
pmc: PMC9632475
pii:
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NIA NIH HHS
ID : R01 AG056999
Pays : United States
Organisme : Office of Naval Research
ID : N00014-20-1-2329
Informations de copyright
Copyright © 2022 by ASME; reuse license CC-BY 4.0.
Références
J Biomech Eng. 2021 Apr 1;143(4):
pubmed: 33332536
PLoS Comput Biol. 2020 Nov 18;16(11):e1007575
pubmed: 33206658
Annu Rev Biomed Eng. 2001;3:245-73
pubmed: 11447064
Comput Methods Biomech Biomed Eng Imaging Vis. 2016;4(2):73-85
pubmed: 28748126
IEEE Trans Biomed Eng. 2012 Sep;59(9):2586-93
pubmed: 22911536
NPJ Digit Med. 2019 Nov 25;2:115
pubmed: 31799423
J Biomech. 2003 Jun;36(6):765-76
pubmed: 12742444
Ann Biomed Eng. 2015 Feb;43(2):404-15
pubmed: 25281409
Int J Numer Method Biomed Eng. 2022 Apr;38(4):e3571
pubmed: 35049153
J Biomech. 1981;14(10):659-69
pubmed: 7334026
J Biomech Eng. 2013 Feb;135(2):021005
pubmed: 23445050
Ann Biomed Eng. 2003 Feb;31(2):207-20
pubmed: 12627828
Front Neurorobot. 2018 Nov 13;12:74
pubmed: 30483090
J Biomech. 2019 Dec 3;97:109348
pubmed: 31668905
IEEE Trans Neural Syst Rehabil Eng. 2022;30:486-495
pubmed: 35192465
PLoS One. 2012;7(12):e52618
pubmed: 23300725
IEEE Trans Rehabil Eng. 2000 Dec;8(4):471-80
pubmed: 11204038
IEEE Trans Neural Syst Rehabil Eng. 2020 Dec;28(12):3113-3120
pubmed: 33186119
J Biomech. 2021 Mar 5;117:110124
pubmed: 33515902
Ann Biomed Eng. 2005 Jun;33(6):829-40
pubmed: 16078622
Int J Numer Method Biomed Eng. 2020 Jan;36(1):e3295
pubmed: 31820588
J Biomech Eng. 2003 Feb;125(1):70-7
pubmed: 12661198
J Appl Biomech. 2004 Nov;20(4):367-95
pubmed: 16467928