A Feature-Encoded Physics-Informed Parameter Identification Neural Network for Musculoskeletal Systems.

data-driven computing feature-encoding musculoskeletal system parameter identification physics-informed neural networks surface electromyography

Journal

Journal of biomechanical engineering
ISSN: 1528-8951
Titre abrégé: J Biomech Eng
Pays: United States
ID NLM: 7909584

Informations de publication

Date de publication:
01 12 2022
Historique:
received: 01 05 2022
pubmed: 17 8 2022
medline: 23 9 2022
entrez: 16 8 2022
Statut: ppublish

Résumé

Identification of muscle-tendon force generation properties and muscle activities from physiological measurements, e.g., motion data and raw surface electromyography (sEMG), offers opportunities to construct a subject-specific musculoskeletal (MSK) digital twin system for health condition assessment and motion prediction. While machine learning approaches with capabilities in extracting complex features and patterns from a large amount of data have been applied to motion prediction given sEMG signals, the learned data-driven mapping is black-box and may not satisfy the underlying physics and has reduced generality. In this work, we propose a feature-encoded physics-informed parameter identification neural network (FEPI-PINN) for simultaneous prediction of motion and parameter identification of human MSK systems. In this approach, features of high-dimensional noisy sEMG signals are projected onto a low-dimensional noise-filtered embedding space for the enhancement of forwarding dynamics prediction. This FEPI-PINN model can be trained to relate sEMG signals to joint motion and simultaneously identify key MSK parameters. The numerical examples demonstrate that the proposed framework can effectively identify subject-specific muscle parameters and the trained physics-informed forward-dynamics surrogate yields accurate motion predictions of elbow flexion-extension motion that are in good agreement with the measured joint motion data.

Identifiants

pubmed: 35972808
pii: 1145509
doi: 10.1115/1.4055238
pmc: PMC9632475
pii:
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NIA NIH HHS
ID : R01 AG056999
Pays : United States
Organisme : Office of Naval Research
ID : N00014-20-1-2329

Informations de copyright

Copyright © 2022 by ASME; reuse license CC-BY 4.0.

Références

J Biomech Eng. 2021 Apr 1;143(4):
pubmed: 33332536
PLoS Comput Biol. 2020 Nov 18;16(11):e1007575
pubmed: 33206658
Annu Rev Biomed Eng. 2001;3:245-73
pubmed: 11447064
Comput Methods Biomech Biomed Eng Imaging Vis. 2016;4(2):73-85
pubmed: 28748126
IEEE Trans Biomed Eng. 2012 Sep;59(9):2586-93
pubmed: 22911536
NPJ Digit Med. 2019 Nov 25;2:115
pubmed: 31799423
J Biomech. 2003 Jun;36(6):765-76
pubmed: 12742444
Ann Biomed Eng. 2015 Feb;43(2):404-15
pubmed: 25281409
Int J Numer Method Biomed Eng. 2022 Apr;38(4):e3571
pubmed: 35049153
J Biomech. 1981;14(10):659-69
pubmed: 7334026
J Biomech Eng. 2013 Feb;135(2):021005
pubmed: 23445050
Ann Biomed Eng. 2003 Feb;31(2):207-20
pubmed: 12627828
Front Neurorobot. 2018 Nov 13;12:74
pubmed: 30483090
J Biomech. 2019 Dec 3;97:109348
pubmed: 31668905
IEEE Trans Neural Syst Rehabil Eng. 2022;30:486-495
pubmed: 35192465
PLoS One. 2012;7(12):e52618
pubmed: 23300725
IEEE Trans Rehabil Eng. 2000 Dec;8(4):471-80
pubmed: 11204038
IEEE Trans Neural Syst Rehabil Eng. 2020 Dec;28(12):3113-3120
pubmed: 33186119
J Biomech. 2021 Mar 5;117:110124
pubmed: 33515902
Ann Biomed Eng. 2005 Jun;33(6):829-40
pubmed: 16078622
Int J Numer Method Biomed Eng. 2020 Jan;36(1):e3295
pubmed: 31820588
J Biomech Eng. 2003 Feb;125(1):70-7
pubmed: 12661198
J Appl Biomech. 2004 Nov;20(4):367-95
pubmed: 16467928

Auteurs

Karan Taneja (K)

Department of Structural Engineering, University of California San Diego, La Jolla, CA 92093.

Xiaolong He (X)

Department of Structural Engineering, University of California San Diego, La Jolla, CA 92093.

QiZhi He (Q)

Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, MN 55455.

Xinlun Zhao (X)

Department of Structural Engineering, University of California San Diego, La Jolla, CA 92093.

Yun-An Lin (YA)

Department of Structural Engineering, University of California San Diego, La Jolla, CA 92093.

Kenneth J Loh (KJ)

Department of Structural Engineering, University of California San Diego, La Jolla, CA 92093.

Jiun-Shyan Chen (JS)

Department of Structural Engineering, University of California San Diego, La Jolla, CA 92093.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH