The Effect of Thermally Robust Ballistic Mechanisms on Climatic Niche in Salamanders.


Journal

Integrative organismal biology (Oxford, England)
ISSN: 2517-4843
Titre abrégé: Integr Org Biol
Pays: England
ID NLM: 101767733

Informations de publication

Date de publication:
2022
Historique:
received: 14 01 2022
revised: 04 05 2022
accepted: 18 05 2022
entrez: 17 8 2022
pubmed: 18 8 2022
medline: 18 8 2022
Statut: epublish

Résumé

Many organismal functions are temperature-dependent due to the contractile properties of muscle. Spring-based mechanisms offer a thermally robust alternative to temperature-sensitive muscular movements and may correspondingly expand a species' climatic niche by partially decoupling the relationship between temperature and performance. Using the ballistic tongues of salamanders as a case study, we explore whether the thermal robustness of elastic feeding mechanisms increases climatic niche breadth, expands geographic range size, and alters the dynamics of niche evolution. Combining phylogenetic comparative methods with global climate data, we find that the feeding mechanism imparts no discernable signal on either climatic niche properties or the evolutionary dynamics of most climatic niche parameters. Although biomechanical innovation in feeding influences many features of whole-organism performance, it does not appear to drive macro-climatic niche evolution in salamanders. We recommend that future work incorporate micro-scale environmental data to better capture the conditions that salamanders experience, and we discuss a few outstanding questions in this regard. Overall, this study lays the groundwork for an investigation into the evolutionary relationships between climatic niche and biomechanical traits in ectotherms.

Identifiants

pubmed: 35975191
doi: 10.1093/iob/obac020
pii: obac020
pmc: PMC9375770
doi:

Types de publication

Journal Article

Langues

eng

Pagination

obac020

Informations de copyright

© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology.

Références

Am Nat. 2018 Jan;191(1):E15-E26
pubmed: 29244559
Am Nat. 2011 Apr;177(4):452-61
pubmed: 21460567
Science. 1974 May 31;184(4140):1001-3
pubmed: 4826166
Sci Rep. 2018 Jul 12;8(1):10575
pubmed: 30002477
Ecol Lett. 2013 Aug;16(8):1095-103
pubmed: 23800223
Proc Biol Sci. 2009 Dec 22;276(1677):4345-52
pubmed: 19776076
Ecol Lett. 2014 Nov;17(11):1427-36
pubmed: 25168260
Ecol Evol. 2018 Apr 02;8(8):4303-4311
pubmed: 29721299
Am Nat. 2004 Jul;164(1):E1-19
pubmed: 15266376
Evolution. 2006 Dec;60(12):2604-21
pubmed: 17263120
J Exp Biol. 2016 Feb;219(Pt 3):431-44
pubmed: 26612894
Ecol Lett. 2010 Nov;13(11):1378-89
pubmed: 20875038
Ecology. 2020 Nov;101(11):e03154
pubmed: 32740923
J Exp Zool A Ecol Integr Physiol. 2021 Oct;335(8):659-667
pubmed: 34288598
Oecologia. 2014 Oct;176(2):357-69
pubmed: 25154754
Proc Biol Sci. 2012 Sep 22;279(1743):3662-9
pubmed: 22719034
Evolution. 2020 Aug;74(8):1804-1814
pubmed: 32323308
Proc Biol Sci. 2012 Apr 7;279(1732):1287-92
pubmed: 21993506
Nature. 2007 Aug 9;448(7154):696-9
pubmed: 17687325
Ecol Evol. 2018 Apr 15;8(9):4644-4656
pubmed: 29760904
Proc Biol Sci. 2017 Jan 25;284(1847):
pubmed: 28100817
J Morphol. 1976 Mar;148(3):265-86
pubmed: 1255731
Proc Natl Acad Sci U S A. 2017 Sep 12;114(37):9936-9941
pubmed: 28851828
Proc Biol Sci. 2014 Nov 22;281(1795):
pubmed: 25274369
Am J Physiol. 1984 Aug;247(2 Pt 2):R217-29
pubmed: 6380314
Ecol Evol. 2018 Nov 22;8(23):11522-11532
pubmed: 30598753
Nature. 2004 Apr 22;428(6985):819-20
pubmed: 15103366
J Exp Zool A Ecol Genet Physiol. 2011 Dec 1;315(10):618-30
pubmed: 21953778
Elife. 2018 Aug 09;7:
pubmed: 30091704
Ecol Lett. 2010 Jun;13(6):705-15
pubmed: 20412281
J Exp Biol. 2011 Apr 15;214(Pt 8):1333-46
pubmed: 21430211
J Exp Biol. 2017 Nov 1;220(Pt 21):3896-3907
pubmed: 29093187
Evolution. 2020 May;74(5):979-991
pubmed: 32190909
BMC Bioinformatics. 2006 Feb 23;7:88
pubmed: 16504105
Am Nat. 2016 Apr;187(4):423-35
pubmed: 27028071
J Exp Biol. 2011 Feb 1;214(Pt 3):353-61
pubmed: 21228194
Ecol Lett. 2013 Aug;16(8):1104-14
pubmed: 23773417
Proc Natl Acad Sci U S A. 2020 May 12;117(19):10445-10454
pubmed: 32341147
Proc Biol Sci. 2009 Aug 7;276(1668):2729-38
pubmed: 19439441
J Exp Biol. 2021 Jan 4;224(Pt 1):
pubmed: 33397796
J Morphol. 2020 Feb;281(2):196-212
pubmed: 31883151
Glob Chang Biol. 2020 Nov;26(11):6616-6629
pubmed: 32311220
J Exp Biol. 2014 Sep 1;217(Pt 17):3146-58
pubmed: 24948633
J Exp Biol. 2011 Jun 15;214(Pt 12):1973-80
pubmed: 21613512
Evolution. 2020 Feb;74(2):476-486
pubmed: 31849047
J Exp Zool A Ecol Genet Physiol. 2016 Jul;325(6):360-76
pubmed: 27320361
J Comp Physiol B. 2013 Aug;183(6):723-33
pubmed: 23483325
J Exp Biol. 2019 Aug 9;222(Pt 15):
pubmed: 31399509
Science. 2018 Apr 27;360(6387):
pubmed: 29700237
Evolution. 1949 Sep;3(3):195-211
pubmed: 18138377
J Exp Biol. 1985 Mar;115:333-44
pubmed: 3875678
Ecol Evol. 2021 Jul 01;11(15):10353-10368
pubmed: 34367580
Nat Ecol Evol. 2020 Aug;4(8):1129-1140
pubmed: 32572219
Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12787-92
pubmed: 16924120
Evolution. 2012 Dec;66(12):3836-51
pubmed: 23206141
Syst Biol. 2021 Dec 16;71(1):93-104
pubmed: 33956152
Evolution. 2022 Feb;76(S1):49-66
pubmed: 34676550
Integr Comp Biol. 2019 Sep 1;59(3):705-715
pubmed: 31134268
PLoS One. 2021 Aug 18;16(8):e0255393
pubmed: 34407101

Auteurs

Sarah T Friedman (ST)

Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511,USA.

Martha M Muñoz (MM)

Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511,USA.

Classifications MeSH