The role of cognitive control in the SNARC effect: A review.

cognitive control conflict adaptation inhibition control spatial-numerical association of response codes (SNARC) effect task switching

Journal

PsyCh journal
ISSN: 2046-0260
Titre abrégé: Psych J
Pays: Australia
ID NLM: 101598595

Informations de publication

Date de publication:
Dec 2022
Historique:
received: 13 03 2022
accepted: 05 07 2022
pubmed: 18 8 2022
medline: 6 12 2022
entrez: 17 8 2022
Statut: ppublish

Résumé

The spatial-numerical association of response codes (SNARC) effect, in which people respond to small numbers faster with the left hand and to large numbers faster with the right hand, is a popular topic in cognitive psychology. Some well-known theoretical accounts explaining this effect include the mental number line model, polarity correspondence principle, dual-route model, and working memory account. However, these fail to explain the finding that the size of the SNARC effect is modulated by cognitive control. Here, we propose a new account-a cognitive control-based view of the SNARC effect. This view argues that the SNARC effect is fundamentally determined by cognitive control in resolving conflicts during stimulus-response mapping. Several subcomponents of cognitive control, such as working memory, mental or task set shifting, inhibition control, and conflict adaptation, can easily modulate the SNARC effect. The cognitive control-based view can account for the flexible SNARC effect observed in diverse task situations while providing new insight into its mechanism.

Identifiants

pubmed: 35975319
doi: 10.1002/pchj.586
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

792-803

Subventions

Organisme : National Natural Science Foundation of China
ID : 31760285
Organisme : National Natural Science Foundation of China
ID : 31860278

Informations de copyright

© 2022 Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

Références

Aben, B., Verguts, T., & Bussche, E. V. D. (2017). Beyond trial-by-trial adaptation: A quantification of the time scale of cognitive control. Journal of Experimental Psychology Human Perception & Performance, 43(3), 509-517. https://doi.org/10.1037/xhp0000324
Adachi, I. (2014). Spontaneous spatial mapping of learned sequence in chimpanzees: Evidence for a SNARC-like effect. PLoS One, 9, e90373. https://doi.org/10.1371/journal.pone.0090373
Ahmad, S., Ch, A. H., Batool, A., Sittar, K., & Malik, M. (2016). Play and cognitive development: Formal operational perspective of Piaget's theory. Journal of Education and Practice, 7(28), 72-79 https://files.eric.ed.gov/fulltext/EJ1118552.pdf
Aleotti, S., Di Girolamo, F., Massaccesi, S., & Priftis, K. (2020). Numbers around Descartes: A preregistered study on the three-dimensional SNARC effect. Cognition, 195, 104111. https://doi.org/10.1016/j.cognition.2019.104111
Babakr, Z. H., Mohamedamin, P., & Kakamad, K. (2019). Piaget's cognitive developmental theory: Critical review. Education Quarterly Reviews, 2(3), 517-524. https://doi.org/10.31014/aior.1993.02.03.84
Bächtold, D., Baumüller, M., & Brugger, P. (1998). Stimulus-response compatibility in representational space. Neuropsychologia, 36(8), 731-735. https://doi.org/10.1016/S0028-3932(98)00002-5
Baddeley, A. D., & Hitch, G. J. (1974). Working memory. The Psychology of Learning and Motivation: Advances in Research and Theory, 8, 47-89. https://doi.org/10.1016/S0079-7421(08)60452-1
Bae, G. Y., Choi, J. M., Cho, Y. S., & Proctor, R. W. (2009). Transfer of magnitude and spatial mappings to the SNARC effect for parity judgments. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(6), 1506-1521. https://doi.org/10.1037/a0017257
Basso Moro, S., Dell'Acqua, R., & Cutini, S. (2018). The SNARC effect is not a unitary phenomenon. Psychonomic Bulletin & Review, 25(2), 688-695. https://doi.org/10.3758/s13423-017-1408-3
Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 402(6758), 179-181. https://doi.org/10.1038/46035
Bulf, H., Capparini, C., Nava, E., de Hevia, M. D., & Cassia, V. M. (2022). Space modulates cross-domain transfer of abstract rules in infants. Journal of Experimental Child Psychology, 213, 105270. https://doi.org/10.1016/j.jecp.2021.105270
Bulf, H., de Hevia, M. D., & Macchi Cassia, V. (2016). Small on the left, large on the right: Numbers orient visual attention onto space in preverbal infants. Developmental Science, 19(3), 394-401. https://doi.org/10.1111/desc.12315
Cipora, K., He, Y., & Nuerk, H. (2020). The spatial-numerical association of response codes effect and math skills: Why related? Annals of the New York Academy of Sciences, 1477(1), 5-19. https://doi.org/10.1111/nyas.14355
Cipora, K., Hohol, M., Nuerk, H. C., Willmes, K., Brożek, B., Kucharzyk, B., & Nęcka, E. (2016). Professional mathematicians differ from controls in their spatial-numerical associations. Psychological Research, 80(4), 710-726. https://doi.org/10.1007/s00426-015-0677-6
Cooney, S. M., Holmes, C. A., & Newell, F. N. (2021). Children's spatial-numerical associations on horizontal, vertical, and sagittal axes. Journal of Experimental Child Psychology, 209, 105-169. https://doi.org/10.1016/j.jecp.2021.105169
Cutini, S., Duma, G. M., & Mento, G. (2021). How time shapes cognitive control: A high-density EEG study of task-switching. Biological Psychology, 160, 108030. https://doi.org/10.1016/j.biopsycho.2021.108030
Cutini, S., Scarpa, F., Scatturin, P., Dell'Acqua, R., & Zorzi, M. (2014). Number-space interactions in the human parietal cortex: Enlightening the SNARC effect with functional near-infrared spectroscopy. Cerebral Cortex, 24(2), 444-451. https://doi.org/10.1093/cercor/bhs321
Daar, M., & Pratt, J. (2008). Digits affect actions: The SNARC effect and response selection. Cortex, 44(4), 400-405. https://doi.org/10.1016/j.cortex.2007.12.003
Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371-396. https://doi.org/10.1037/0096-3445.122.3.371
de Hevia, M. D., Izard, V., Coubart, A., Spelke, E. S., & Streri, A. (2014). Representations of space, time, and number in neonates. Proceedings of the National Academy of Sciences, 111(13), 4809-4813. https://doi.org/10.1073/pnas.1323628111
Deng, Z., Chen, Y., Zhu, X., & Li, Y. (2017). The effect of working memory load on the SNARC effect: Maybe tasks have a word to say. Memory & Cognition, 45(3), 428-441. https://doi.org/10.3758/s13421-016-0676-x
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64(1), 135-168. https://doi.org/10.1146/annurev-psych-113011-143750
Diamond, A., Barnett, W. S., Thomas, J., & Munro, S. (2007). Preschool program improves cognitive control. Science, 318(5855), 1387-1388. https://doi.org/10.1126/science.1151148
Didino, D., Breilb, C., & Knopsc, A. (2019). The influence of semantic processing and response latency on the SNARC effect. Acta Psychologica, 196, 75-86. https://doi.org/10.1016/j.actpsy.2019.04.008
Di Rosa, E., Bardi, L., Umiltà, C., Masina, F., Forgione, M., & Mapelli, D. (2017). Transcranial direct current stimulation (tDCS) reveals a dissociation between SNARC and MARC effects: Implication for the polarity correspondence account. Cortex, 93, 68-78. https://doi.org/10.1016/j.cortex.2017.05.002
Dixon, P. (2017). Episodic retrieval and the SNARC effect. Psychonomic Bulletin & Review, 24(6), 1943-1948. https://doi.org/10.3758/s13423-017-1253-4
Doricchi, F., Guariglia, P., Gasparini, M., & Tomaiuolo, F. (2005). Dissociation between physical and mental number line bisection in right hemisphere brain damage. Nature Neuroscience, 8(12), 1663-1665. https://doi.org/10.1038/nn1563
Drucker, C., & Brannon, E. M. (2014). Rhesus monkeys (Macaca mulatta) map number onto space. Cognition, 132, 57-67. https://doi.org/10.1016/j.cognition.2014.03.011
Eriksen, C. W. (1995). The flankers task and response competition: A useful tool for investigating a variety of cognitive problems. Visual Cognition, 2(2-3), 101-118. https://doi.org/10.1080/13506289508401726
Fan, J. (2014). An information theory account of cognitive control. Frontiers in Human Neuroscience, 8, 680. https://doi.org/10.3389/fnhum.2014.00680
Fattorini, E., Pinto, M., Merola, S., D'Onofrio, M., & Doricchi, F. (2016). On the instability and constraints of the interaction between number representation and spatial attention in healthy humans: A concise review of the literature and new experimental evidence. Progress in Brain Research, 227, 223-256. https://doi.org/10.1016/bs.pbr.2016.04.023
Fias, W., Brysbaert, M., Geypens, F., & d'Ydewalle, G. (1996). The importance of magnitude information in numerical processing: Evidence from the SNARC effect. Mathematical Cognition, 2(1), 95-110. https://doi.org/10.1080/135467996387552
Fischer, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 6(6), 555-556. https://doi.org/10.1038/nn1066
Fumarola, A., Prpic, V., Luccio, R., & Umiltà, C. (2020). A SNARC-like effect for music notation: The role of expertise and musical instrument. Acta Psychologica, 208, 103120. https://doi.org/10.1016/j.actpsy.2020.103120
Galton, F. (1880). Visualised numerals. Nature, 21(533), 252-256. https://doi.org/10.1038/021252a0
Georges, C. (2017). Number-space associations as indexed by the SNARC effect-Their relations to mathematical abilities and anxiety & their underlying cognitive mechanisms (Doctoral dissertation, University of Luxembourg, Luxembourgs).
Georges, C., Hoffmann, D., & Schiltz, C. (2018). Implicit and explicit number-space associations differentially relate to interference control in young adults with ADHD. Frontiers in Psychology, 9, 775. https://doi.org/10.3389/fpsyg.2018.00775
Gevers, W., Lammertyn, J., Notebaert, W., Verguts, T., & Fias, W. (2006). Automatic response activation of implicit spatial information: Evidence from the SNARC effect. Acta Psychologica, 122(3), 221-233. https://doi.org/10.1016/j.actpsy.2005.11.004
Gevers, W., Ratinckx, E., De Baene, W., & Fias, W. (2006). Further evidence that the SNARC effect is processed along a dual-route architecture: Evidence from the lateralized readiness potential. Experimental Psychology, 53(1), 58-68. https://doi.org/10.1027/1618-3169.53.1.58
Gevers, W., Santens, S., Dhooge, E., Chen, Q., Van den Bossche, L., Fias, W., & Verguts, T. (2010). Verbal-spatial and visuospatial coding of number-space interactions. Journal of Experimental Psychology: General, 139(1), 180-190. https://doi.org/10.1037/a0017688
Gevers, W., Verguts, T., Reynvoet, B., Caessens, B., & Fias, W. (2006). Numbers and space: A computational model of the SNARC effect. Journal of Experimental Psychology: Human Perception and Performance, 32(1), 32-44. https://doi.org/10.1037/0096-1523.32.1.32
Ghazi, S. R., Khan, U. A., Shahzada, G., & Ullah, K. (2014). Formal operational stage of Piaget's cognitive development theory: An implication in learning mathematics. Journal of Educational Research, 17(2), 71-84.
Ginsburg, V., & Gevers, W. (2015). Spatial coding of ordinal information in short-and long-term memory. Frontiers in Human Neuroscience, 9(8), 1-10. https://doi.org/10.3389/fnhum.2015.00008
Gökaydin, D., Brugger, P., & Loetscher, T. (2018). Sequential effects in SNARC. Scientific Reports, 8(1), 1-13. https://doi.org/10.1038/s41598-018-29337-2
Guida, A., & Campitelli, G. (2019). Explaining the SPoARC and SNARC effects with knowledge structures: An expertise account. Psychonomic Bulletin & Review, 26(2), 434-451. https://doi.org/10.3758/s13423-019-01582-0
Guida, A., Fartoukh, M., & Mathy, F. (2020). The development of working memory spatialization revealed by using the cave paradigm in a two-alternative spatial choice. Annals of the New York Academy of Sciences, 1477(1), 54-70. https://doi.org/10.1111/nyas.14433
Gut, M., Binder, M., Finc, K., & Szeszkowski, W. (2021). Brain activity underlying response induced by SNARC-congruent and SNARC-incongruent stimuli. Acta Neurobiologiae Experimentalis, 81(2), 95-114. https://doi.org/10.21307/ane-2021-012
Hartmann, M., Fischer, M. H., & Mast, F. W. (2019). Sharing a mental number line across individuals? The role of body position and empathy in joint numerical cognition. Quarterly Journal of Experimental Psychology, 72(7), 1732-1740. https://doi.org/10.1177/1747021818809254
Herrera, A., Macizo, P., & Semenza, C. (2008). The role of working memory in the association between number magnitude and space. Acta Psychologica, 128(2), 225-237. https://doi.org/10.1016/j.actpsy.2008.01.002
Hesse, P. N., & Bremmer, F. (2017). The SNARC effect in two dimensions: Evidence for a frontoparallel mental number plane. Vision Research, 130, 85-96. https://doi.org/10.1016/j.visres.2016.10.007
Hoffmann, D., Mussolin, C., Martin, R., & Schiltz, C. (2014). The impact of mathematical proficiency on the number-space association. PLoS One, 9(1), e85048. https://doi.org/10.1371/journal.pone.0085048
Hoffmann, D., Pigat, D., & Schiltz, C. (2014). The impact of inhibition capacities and age on number-space associations. Cognitive Processing, 15, 329-342. https://doi.org/10.1007/s10339-014-0601-9
Inhelder, B., & Piaget, J. (1958). The growth of logical thinking from childhood to adolescence: An essay on the construction of formal operational structures (p. 22). Psychology Press.
Ito, Y., & Hatta, T. (2004). Spatial structure of quantitative representation of numbers: Evidence from the SNARC effect. Memory & Cognition, 32(4), 662-673. https://doi.org/10.3758/BF03195857
Jersild, A. T. (1927). Mental set and shift. Archives of Psychology, 14(89), 5-82.
Kay, W. K., Francis, L. J., & Gibson, H. M. (1996). Attitude toward Christianity and the transition to formal operational thinking. British Journal of Religious Education, 19(1), 45-55. https://doi.org/10.1080/0141620960190107
Keus, I. M., Jenks, K. M., & Schwarz, W. (2005). Psychophysiological evidence that the SNARC effect has its functional locus in a response selection stage. Cognitive Brain Research, 24(1), 48-56. https://doi.org/10.1016/j.cogbrainres.2004.12.005
Kramer, P., Bressan, P., & Grassi, M. (2018). The SNARC effect is associated with worse mathematical intelligence and poorer time estimation. Royal Society Open Science, 5(8), 172362. https://doi.org/10.1098/rsos.172362
Lachmair, M., Dudschig, C., de la Vega, I., & Kaup, B. (2014). Relating numeric cognition and language processing: Do numbers and words share a common representational platform? Acta Psychologica, 148, 107-114. https://doi.org/10.1016/j.actpsy.2013.12.004
Lamm, C., Bauer, H., Vitouch, O., & Gstättner, R. (1999). Differences in the ability to process a visuo-spatial task are reflected in event-related slow cortical potentials of human subjects. Neuroscience Letters, 269(3), 137-140. https://doi.org/10.1016/S0304-3940(99)00441-3
Leth-Steensen, C., & Citta, R. (2015). Bad-good constraints on a polarity correspondence account for the spatial-numerical association of response codes (SNARC) and markedness association of response codes (MARC) effects. Quarterly Journal of Experimental Psychology, 69(3), 482-494. https://doi.org/10.1080/17470218.2015.1055283
Li, J., Cao, B., Han, J., Xie, L., & Li, F. (2019). Not inertia but reconfiguration: Asymmetric switch cost in a hierarchical task. Brain Research, 1720, 146291. https://doi.org/10.1016/j.brainres.2019.06.010
Li, M., Zhang, E., Zhang, Y., Fanga, X., & Li, Q. (2017). Flexible verbal-spatial mapping in the horizontal and vertical SNARC effects of mainland Chinese readers. American Journal of Psychology, 130(3), 339-351. https://doi.org/10.5406/amerjpsyc.130.3.0339
Lindemann, O., Abolafia, J. M., Pratt, J., & Bekkering, H. (2008). Coding strategies in number space: Memory requirements influence spatial numerical associations. Quarterly Journal of Experimental Psychology, 61(4), 515-524. https://doi.org/10.1080/17470210701728677
MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109(2), 163-203. https://doi.org/10.1037/0033-2909.109.2.163
Marghetis, T., & Youngstrom, K. (2014). Pierced by the number line: Integers are associated with back-to-front sagittal space. Proceedings of the Annual Meeting of the Cognitive Science Society, 36(36), 946-951. https://escholarship.org/uc/item/7740d93z
Michel, C., Cavezian, C., d'Amato, T., Dalery, J., Rode, G., Saoud, M., & Rossetti, Y. (2007). Pseudoneglect in schizophrenia: A line bisection study with cueing. Cognitive Neuropsychiatry, 12(3), 222-234. https://doi.org/10.1080/13546800601033266
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49-100. https://doi.org/10.1006/cogp.1999.0734
Nan, W., Yan, L., Yang, G., Liu, X., & Fu, S. (2022). Two processing stages of the SNARC effect. Psychological Research, 86(2), 375-385. https://doi.org/10.1007/s00426-021-01506-5
Nikolaev, A. R., Beck, A. K., Theobald, S., Lachmann, T., & van Leeuwen, C. (2020). Factoring in the spatial effects of symbolic number representation. Biological Psychology, 149, 107782. https://doi.org/10.1016/j.biopsycho.2019.107782
Notebaert, W., & Verguts, T. (2007). Dissociating conflict adaptation from feature integration: A multiple regression approach. Journal of Experimental Psychology Human Perception & Performance, 33(5), 1256-1260. https://doi.org/10.1037/0096-1523.33.5.1256
Notebaert, W., & Verguts, T. (2008). Cognitive control acts locally. Cognition, 106(2), 1071-1080. https://doi.org/10.1016/j.cognition.2007.04.011
Nuerk, H. C., Patro, K., Cress, U., Schild, U., Friedrich, C. K., & Göbel, S. M. (2015). How space-number associations may be created in preliterate children: Six distinct mechanisms. Frontiers in Psychology, 6, 215. https://doi.org/10.3389/fpsyg.2015.00215
Núez-Pea, M. I., Colomé, A., & González-Gómez, B. (2021). The spatial-numerical association of response codes (SNARC) effect in highly math-anxious individuals: An ERP study. Biological Psychology, 161(5), 108062. https://doi.org/10.1016/j.biopsycho.2021.108062
Oesterdiekhoff, G. W. (2021). Different developmental stages and developmental ages of humans in history: Culture and socialization, open and closed developmental windows, and advanced and arrested development. The American Journal of Psychology, 134(2), 217-236. https://doi.org/10.5406/amerjpsyc.134.2.0217
Pfister, R., Schroeder, P. A., & Kunde, W. (2013). SNARC struggles: Instant control over spatial-numerical associations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(6), 1953-1958. https://doi.org/10.1037/a0032991
Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3-25. https://doi.org/10.1080/00335558008248231
Priftis, K., Zorzi, M., Meneghello, F., Marenzi, R., & Umiltà, C. (2006). Explicit versus implicit processing of representational space in neglect: Dissociations in accessing the mental number line. Journal of Cognitive Neuroscience, 18(4), 680-688. https://doi.org/10.1162/jocn.2006.18.4.680
Proctor, R. W., & Cho, Y. S. (2006). Polarity correspondence: A general principle for performance of speeded binary classification tasks. Psychological Bulletin, 132(3), 416-442. https://doi.org/10.1037/0033-2909.132.3.416
Rasoulzadeh, V., Sahan, M. I., Van Dijck, J. P., Abrahamse, E., Marzecova, A., Verguts, T., & Fias, W. (2021). Spatial attention in serial order working memory: An EEG study. Cerebral Cortex, 31(5), 2482-2493. https://doi.org/10.1093/cercor/bhaa368
Restle, F. (1970). Speed of adding and comparing numbers. Journal of Experimental Psychology, 83(2p1), 274-278. https://doi.org/10.1037/h0028573
Rossetti, Y., Jacquin-Courtois, S., Rode, G., Ota, H., Michel, C., & Boisson, D. (2004). Does action make the link between number and space representation? Visuo-manual adaptation improves number bisection in unilateral neglect. Psychological Science, 15(6), 426-430. https://doi.org/10.1111/j.0956-7976.2004.00696.x
Rugani, R., Betti, S., Ceccarini, F., & Sartori, L. (2017). Act on numbers: Numerical magnitude influences selection and kinematics of finger movement. Frontiers in Psychology, 8, 1481. https://doi.org/10.3389/fpsyg.2017.01481
Rugani, R., Betti, S., & Sartori, L. (2018). Numerical affordance influences action execution: A kinematic study of finger movement. Frontiers in Psychology, 9, 637. https://doi.org/10.3389/fpsyg.2018.00637
Rugani, R., Vallortigara, G., Priftis, K., & Regolin, L. (2015). Number-space mapping in the newborn chick resembles humans' mental number line. Science, 347(6221), 534-536. https://doi.org/10.1126/science.aaa1379
Rugani, R., Vallortigara, G., Priftis, K., & Regolin, L. (2020). Numerical magnitude, rather than individual bias, explains spatial numerical association in newborn chicks. eLife, 9, e54662. https://doi.org/10.7554/eLife.54662
Sahan, M. I., Van Dijck, J. P., & Fias, W. (2022). Eye-movements reveal the serial position of the attended item in verbal working memory. Psychonomic Bulletin & Review, 29(2), 530-540. https://doi.org/10.3758/s13423-021-02005-9
Sanders, A., & Lamers, J. (2002). The Eriksen flanker effect revisited. Acta Psychologica, 109(1), 41-56. https://doi.org/10.1016/S0001-6918(01)00048-8
Schall, J. D., Palmeri, T. J., & Logan, G. D. (2017). Models of inhibitory control. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1718), 20160193. https://doi.org/10.1098/rstb.2016.0193
Schliephake, A., Bahnmueller, J., Willmes, K., & Moeller, K. (2021). Cognitive control in number processing: New evidence from task switching. Psychological Research, 85(7), 2578-2587. https://doi.org/10.1007/s00426-020-01418-w
Schroeder, P. A., Pfister, R., Kunde, W., Nuerk, H. C., & Plewnia, C. (2016). Counteracting implicit conflicts by electrical inhibition of the prefrontal cortex. Journal of Cognitive Neuroscience, 28(11), 1737-1748. https://doi.org/10.1162/jocn_a_01001
Schwarz, W., & Keus, I. M. (2004). Moving the eyes along the mental number line: Comparing SNARC effects with saccadic and manual responses. Attention, Perception, & Psychophysics, 66(4), 651-664. https://doi.org/10.3758/BF03194909
Shaki, S., & Fischer, M. H. (2008). Reading space into numbers-A cross-linguistic comparison of the SNARC effect. Cognition, 108(2), 590-599. https://doi.org/10.1016/j.cognition.2008.04.001
Shaki, S., & Fischer, M. H. (2018). Deconstructing spatial-numerical associations. Cognition, 175, 109-113. https://doi.org/10.1016/j.cognition.2018.02.022
Shaki, S., Fischer, M. H., & Petrusic, W. M. (2009). Reading habits for both words and numbers contribute to the SNARC effect. Psychonomic Bulletin & Review, 16(2), 328-331. https://doi.org/10.3758/PBR.16.2.328
Shenhav, A., Botvinick, M., & Cohen, J. (2013). The expected value of control: An integrative theory of anterior cingulate cortex function. Neuron, 79(2), 217-240. https://doi.org/10.1016/j.neuron.2013.07.007
Simon, J. R. (1990). The effects of an irrelevant directional cue on human information processing. Advances in Psychology, 65, 31-86. https://doi.org/10.1016/S0166-4115(08)61218-2
Sixtus, E., Lonnemann, J., Fischer, M. H., & Werner, K. (2019). Mental number representations in 2D space. Frontiers in Psychology, 10, 172. https://doi.org/10.3389/fpsyg.2019.00172
Stürmer, B., Leuthold, H., Soetens, E., SchröTer, H., & Sommer, W. (2002). Control over location-based response activation in the Simon task: Behavioral and electrophysiological evidence. Journal of Experimental Psychology Human Perception & Performance, 28(6), 1345-1363. https://doi.org/10.1037/0096-1523.28.6.1345
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643-662. https://doi.org/10.1037/h0054651
Tan, S., & Dixon, P. (2011). Repetition and the SNARC effect with one- and two-digit numbers. Canadian Joumal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 65(2), 84-97. https://doi.org/10.1037/a0022368
Toomarian, E. Y., Meng, R., & Hubbard, E. M. (2019). Individual differences in implicit and explicit spatial processing of fractions. Frontiers in Psychology, 10, 596. https://doi.org/10.3389/fpsyg.2019.00596
Van den Bussche, E., Vanmeert, K., Aben, B., & Sasanguie, D. (2020). Too anxious to control: The relation between math anxiety and inhibitory control processes. Scientific Reports, 10, 19922. https://doi.org/10.1038/s41598-020-76920-7
Van Dijck, J. P., Abrahamse, E. L., Acar, F., Ketels, B., & Fias, W. (2014). A working memory account of the interaction between numbers and spatial attention. Quarterly Journal of Experimental Psychology, 67(8), 1500-1513. https://doi.org/10.1080/17470218.2014.903984
Van Dijck, J. P., & Doricchi, F. (2019). Multiple left-to-right spatial representations of number magnitudes? Evidence from left spatial neglect. Experimental Brain Research, 237(4), 1031-1043. https://doi.org/10.1007/s00221-019-05483-5
Van Dijck, J. P., & Fias, W. (2011). A working memory account for spatial-numerical associations. Cognition, 119(1), 114-119. https://doi.org/10.1016/j.cognition.2010.12.013
Van Dijck, J. P., Gevers, W., & Fias, W. (2009). Numbers are associated with different types of spatial information depending on the task. Cognition, 113(2), 248-253. https://doi.org/10.1016/j.cognition.2009.08.005
Vicovaro, M., & Dalmaso, M. (2020). Is ‘heavy’ up or down? Testing the vertical spatial representation of weight. Psychological Research, 85(3), 1183-1200. https://doi.org/10.1007/s00426-020-01309-0
Weis, T., Nuerk, H. C., & Lachmann, T. (2018). Attention allows the SNARC effect to operate on multiple number lines. Scientific Reports, 8, 13778. https://doi.org/10.1038/s41598-018-32174-y
Wendt, M., Kiesel, A., Mathew, H., Luna-Rodriguez, A., & Jacobsen, T. (2013). Irrelevant stimulus processing when switching between tasks. Zeitschrift für Psychologie, 221(1), 41-50. https://doi.org/10.1027/2151-2604/a000129
Winter, B., Matlock, T., Shaki, S., & Fischer, M. H. (2015). Mental number space in three dimensions. Neuroscience & Biobehavioral Reviews, 57, 209-219. https://doi.org/10.1016/j.neubiorev.2015.09.005
Wood, G., Willmes, K., Nuerk, H. C., & Fischer, M. H. (2008). On the cognitive link between space and number: A meta-analysis of the SNARC effect. Psychology Science Quarterly, 50(4), 489-525.
Wu, H., Yang, X., Geng, L., Zhu, X., & Chen, Y. (2020). How do working memory and inhibition contribute to the SNARC effect in Chinese school-aged children? Cognitive Development, 56, 100959. https://doi.org/10.1016/j.cogdev.2020.100959
Xie, L., Ren, M., Cao, B., & Li, F. (2017). Distinct brain responses to different inhibitions: Evidence from a modified flanker task. Scientific Reports, 7, 6657. https://doi.org/10.1038/s41598-017-04907-y
Yan, L., Yang, G., Nan, W., Liu, X., & Fu, S. (2021). The SNARC effect occurs in the response-selection stage. Acta Psychologica, 215, 103292. https://doi.org/10.1016/j.actpsy.2021.103292
Yu, S., Li, B., Zhang, M., Gong, T., Li, X., Li, Z., Gao, X., Zhang, S., Jiang, T., & Chen, C. (2020). Automaticity in processing spatial-numerical associations: Evidence from a perceptual orientation judgment task of Arabic digits in frames. PLoS One, 15(2), e0229130. https://doi.org/10.1371/journal.pone.0229130
Zebian, S. (2005). Linkages between number concepts, spatial thinking, and directionality of writing: The SNARC effect and the reverse SNARC effect in English and Arabic monoliterates, biliterates, and illiterate Arabic speakers. Journal of Cognition and Culture, 5(1), 165-190. https://doi.org/10.1163/1568537054068660
Zhang, P., Cao, B., & Li, F. (2021). SNARC effect modulated by central executive control: Revealed in a cue-based trisection task. Psychological Research, 85(6), 2223-2236. https://doi.org/10.1007/s00426-020-01407-z
Zhao, L., Bai, Y., Ma, J., & Wang, Y. (2015). Local control mechanisms of implicit and explicit conflicts. Experimental Psychology, 62(3), 153-160. https://doi.org/10.1027/1618-3169/a000281
Zhuo, B., Chen, Y., Zhu, M., Cao, B., & Li, F. (2021). Response variations can promote the efficiency of task switching: Electrophysiological evidence. Neuropsychologia, 156, 107828. https://doi.org/10.1016/j.neuropsychologia.2021.107828
Zhuo, B., Zhu, M., Cao, B., & Li, F. (2021). More change in task repetition, less cost in task switching: Behavioral and event-related potential evidence. European Journal of Neuroscience, 53(8), 2553-2566. https://doi.org/10.1111/ejn.15113
Zohar-Shai, B., Tzelgov, J., Karni, A., & Rubinsten, O. (2017). It does exist! A left-to-right spatial-numerical association of response codes (SNARC) effect among native Hebrew speakers. Journal of Experimental Psychology Human Perception & Performance, 43(4), 719-728. https://doi.org/10.1037/xhp0000336
Zorzi, M., Priftis, K., & Umiltà, C. (2002). Brain damage: Neglect disrupts the mental number line. Nature, 417(6885), 138-139.

Auteurs

Ping Zhang (P)

School of Psychology, Jiangxi Normal University, Nanchang, China.

Bihua Cao (B)

School of Psychology, Jiangxi Normal University, Nanchang, China.

Fuhong Li (F)

School of Psychology, Jiangxi Normal University, Nanchang, China.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH