Blue whales increase feeding rates at fine-scale ocean features.

Lagrangian coherent structures baleen whale biologging finite-time Lyapunov exponent habitat resource selection movement ecology

Journal

Proceedings. Biological sciences
ISSN: 1471-2954
Titre abrégé: Proc Biol Sci
Pays: England
ID NLM: 101245157

Informations de publication

Date de publication:
31 08 2022
Historique:
entrez: 17 8 2022
pubmed: 18 8 2022
medline: 19 8 2022
Statut: ppublish

Résumé

Marine predators face the challenge of reliably finding prey that is patchily distributed in space and time. Predators make movement decisions at multiple spatial and temporal scales, yet we have a limited understanding of how habitat selection at multiple scales translates into foraging performance. In the ocean, there is mounting evidence that submesoscale (i.e. less than 100 km) processes drive the formation of dense prey patches that should hypothetically provide feeding hot spots and increase predator foraging success. Here, we integrated environmental remote-sensing with high-resolution animal-borne biologging data to evaluate submesoscale surface current features in relation to the habitat selection and foraging performance of blue whales in the California Current System. Our study revealed a consistent functional relationship in which blue whales disproportionately foraged within dynamic aggregative submesoscale features at both the regional and feeding site scales across seasons, regions and years. Moreover, we found that blue whale feeding rates increased in areas with stronger aggregative features, suggesting that these features indicate areas of higher prey density. The use of fine-scale, dynamic features by foraging blue whales underscores the need to take these features into account when designating critical habitat and may help inform strategies to mitigate the impacts of human activities for the species.

Identifiants

pubmed: 35975432
doi: 10.1098/rspb.2022.1180
pmc: PMC9382224
doi:

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

20221180

Références

Ann Rev Mar Sci. 2013;5:115-36
pubmed: 22809196
Oecologia. 1983 Feb;56(2-3):234-238
pubmed: 28310199
Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):3072-3077
pubmed: 29483242
Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):7362-7367
pubmed: 29941592
Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2199-204
pubmed: 23341596
Mov Ecol. 2019 Jul 18;7:26
pubmed: 31360521
Curr Biol. 2020 Dec 7;30(23):4773-4779.e3
pubmed: 33007246
Proc Biol Sci. 2018 Aug 22;285(1885):
pubmed: 30135161
Nat Commun. 2018 Nov 12;9(1):4758
pubmed: 30420651
Trends Ecol Evol. 2016 Jun;31(6):463-475
pubmed: 26979550
Trends Ecol Evol. 1999 Aug;14(8):300-305
pubmed: 10407426
Trends Ecol Evol. 2008 Feb;23(2):87-94
pubmed: 18191283
Theor Popul Biol. 1976 Apr;9(2):129-36
pubmed: 1273796
Sci Adv. 2015 Oct 02;1(9):e1500469
pubmed: 26601290
PLoS One. 2017 Mar 1;12(3):e0172839
pubmed: 28249020
Geophys Res Lett. 2020 Jul 16;47(13):e2020GL088039
pubmed: 32728303
Sci Rep. 2018 May 9;8(1):7363
pubmed: 29743492
Ann Rev Mar Sci. 2017 Jan 3;9:367-386
pubmed: 27620830
Science. 2015 Jun 12;348(6240):1255642
pubmed: 26068859
PLoS One. 2013;8(1):e53348
pubmed: 23301063
Proc Natl Acad Sci U S A. 2019 Aug 27;116(35):17187-17192
pubmed: 31387979
Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19052-9
pubmed: 19060196
PLoS One. 2012;7(1):e30161
pubmed: 22272294
Mov Ecol. 2021 Feb 17;9(1):5
pubmed: 33596991
Ann Rev Mar Sci. 2022 Jan 3;14:129-159
pubmed: 34416123
Biol Lett. 2012 Oct 23;8(5):813-6
pubmed: 22552636
Proc Biol Sci. 2022 Aug 31;289(1981):20221180
pubmed: 35975432
Proc Natl Acad Sci U S A. 2009 May 19;106(20):8245-50
pubmed: 19416811
Proc Biol Sci. 2021 Apr 28;288(1949):20210592
pubmed: 33906396
Ann Rev Mar Sci. 2016;8:125-59
pubmed: 26359818
J Exp Biol. 2018 Jan 25;221(Pt 2):
pubmed: 29191861
Nat Commun. 2014 Oct 15;5:5239
pubmed: 25316164
Curr Biol. 2016 Oct 10;26(19):2617-2624
pubmed: 27666966
Sci Rep. 2019 Jan 17;9(1):157
pubmed: 30655549
J Exp Biol. 2011 Jan 1;214(Pt 1):131-46
pubmed: 21147977
Science. 2019 Dec 13;366(6471):1367-1372
pubmed: 31831666

Auteurs

James A Fahlbusch (JA)

Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA.
Cascadia Research Collective, Olympia, WA, USA.

Max F Czapanskiy (MF)

Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA.

John Calambokidis (J)

Cascadia Research Collective, Olympia, WA, USA.

David E Cade (DE)

Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA.

Briana Abrahms (B)

Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA, USA.

Elliott L Hazen (EL)

Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA.
Environmental Research Division, NOAA Southwest Fisheries Science Center, Monterey, CA, USA.

Jeremy A Goldbogen (JA)

Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH