Metabolomics Profiling of Pituitary Adenomas by Raman Spectroscopy, Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy, and Mass Spectrometry of Serum Samples.
Journal
Analytical chemistry
ISSN: 1520-6882
Titre abrégé: Anal Chem
Pays: United States
ID NLM: 0370536
Informations de publication
Date de publication:
30 08 2022
30 08 2022
Historique:
pubmed:
19
8
2022
medline:
1
9
2022
entrez:
18
8
2022
Statut:
ppublish
Résumé
To date, no studies are available in which pituitary adenomas (PAs) have been studied using techniques like confocal Raman spectroscopy, attenuated total reflection-Fourier transform infrared (FT-IR), and liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the same serum samples. To understand the metabolomics fingerprint, Raman spectra of 16 acromegaly, 19 Cushing's, and 33 nonfunctional PA (NFPA) and ATR-FTIR spectral acquisition of 16 acromegaly, 18 Cushing's, and 22 NFPA patient's serum samples were acquired. Next, Principal component-based linear discriminant analysis (PC-LDA) models were developed, Raman spectral analysis classified acromegaly with an accuracy of 79.17%, sensitivity of 75%, and specificity of 81.25%, Cushing's with an accuracy of 66.67%, sensitivity of 100%, and specificity of 52.63%, and NFPA with an accuracy of 73.17%, sensitivity of 75%, and specificity of 72.73%. ATR-FTIR spectral analysis classified acromegaly with an accuracy of 95.83%, sensitivity of 100%, and specificity of 93.75%, Cushing's with an accuracy of 65.38%, sensitivity of 87.5%, and specificity of 55.56%, and NFPA with an accuracy of 70%, sensitivity of 87.5%, and specificity of 43.75%. In either of the cases, healthy individual cohorts were clearly segregated from the disease cohort, which identified differential regulated regions of nucleic acids, lipids, amides, phosphates, and polysaccharide/C-C residue α helix regions. Furthermore, LC-MS/MS-based analysis of sera samples resulted in the identification of various sphingosine, lipids, acylcarnitines, amino acids, ethanolamine, choline, and their derivatives that differentially regulated in each tumor cohort. We believe cues obtained from the study may be used to generate the metabolite-based test to diagnose PAs from serum in addition to conventional techniques and also to understand disease biology for better disease management, point of care, and improving quality of life in PA patients.
Identifiants
pubmed: 35980087
doi: 10.1021/acs.analchem.2c02487
doi:
Substances chimiques
Lipids
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM