Fano Resonance in Single-Molecule Junctions.

Charge Transfer Electrochemical Gating Fano Resonance Single-Molecule Junctions

Journal

Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543

Informations de publication

Date de publication:
04 Oct 2022
Historique:
received: 10 07 2022
pubmed: 19 8 2022
medline: 19 8 2022
entrez: 18 8 2022
Statut: ppublish

Résumé

The Fano resonance in single-molecule junctions could be created by interaction with discrete and continuous molecular orbitals and enables effective electron transport modulation between constructive and destructive interference within a small energy range. However, direct observation of Fano resonance remains unexplored because of the disappearance of discrete orbitals by molecule-electrode coupling. We demonstrated the room-temperature observation of Fano resonance from electrochemical gated single-molecule conductance and current-voltage measurements of a para-carbazole anion junction. Theoretical calculations reveal that the negative charge on the nitrogen atom induces a localized HOMO on the molecular center, creating Fano resonance by interfering with the delocalized LUMO on the molecular backbone. Our findings demonstrate that the Fano resonance in electron transport through single-molecule junctions opens pathways for designs of interference-based electronic devices.

Identifiants

pubmed: 35981229
doi: 10.1002/anie.202210097
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e202210097

Subventions

Organisme : National Key Research and Development Program of China
ID : 2017YFA0204902
Organisme : National Natural Science Foundation of China
ID : 22173075, 21933012, 31871877
Organisme : National Natural Science Foundation of China
ID : 22002130
Organisme : National Natural Science Foundation of China
ID : 21601182, 92061117
Organisme : Fundamental Research Funds for the Central Universities
ID : 20720200068
Organisme : Fundamental Research Funds for the Central Universities
ID : 20720190002
Organisme : Strategic Priority Research Program of the Chinese Academy of Sciences
ID : Grant XDB20000000

Informations de copyright

© 2022 Wiley-VCH GmbH.

Références

D. Xiang, X. Wang, C. Jia, T. Lee, X. Guo, Chem. Rev. 2016, 116, 4318-4440.
J. Liu, X. Huang, F. Wang, W. Hong, Acc. Chem. Res. 2019, 52, 151-160.
H. Chen, J. Fraser Stoddart, Nat. Rev. Mater. 2021, 6, 804-828.
R. Frisenda, V. A. E. C. Janssen, F. C. Grozema, H. S. J. van der Zant, N. Renaud, Nat. Chem. 2016, 8, 1099-1104.
T. A. Su, M. Neupane, M. L. Steigerwald, L. Venkataraman, C. Nuckolls, Nat. Rev. Mater. 2016, 1, 16002.
C. J. Lambert, Chem. Soc. Rev. 2015, 44, 875-888.
U. Fano, Phys. Rev. 1961, 124, 1866-1878.
B. Luk′yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, Nat. Mater. 2010, 9, 707-715.
M. F. Limonov, M. V. Rybin, A. N. Poddubny, Y. S. Kivshar, Nat. Photonics 2017, 11, 543-554.
Y. Han, W. J. Gong, H. M. Wang, A. Du, J. Appl. Phys. 2012, 112, 123701.
Y. Han, X. Y. Sui, W. J. Gong, J. Appl. Phys. 2013, 113, 233701.
A. Molle, A. Dubois, J. D. Gorfinkiel, L. S. Cederbaum, N. Sisourat, Phys. Rev. A 2021, 103, 012808.
C. R. Liu, L. Huang, H. Luo, Y. C. Lai, Phys. Rev. Appl. 2020, 13, 034061.
S. Norimoto, S. Nakamura, Y. Okazaki, T. Arakawa, K. Asano, K. Onomitsu, K. Kobayashi, N. Kaneko, Phys. Rev. B 2018, 97, 195313.
X. Cui, F. Qin, Y. Lai, H. Wang, L. Shao, H. Chen, J. Wang, H. Lin, ACS Nano 2018, 12, 12541-12550.
M. Baghernejad, X. Zhao, K. Baruël Ørnsø, M. Füeg, P. Moreno-García, A. V. Rudnev, V. Kaliginedi, S. Vesztergom, C. Huang, W. Hong, P. Broekmann, T. Wandlowski, K. S. Thygesen, M. R. Bryce, J. Am. Chem. Soc. 2014, 136, 17922-17925.
Y. Li, M. Buerkle, G. Li, A. Rostamian, H. Wang, Z. Wang, D. R. Bowler, T. Miyazaki, L. Xiang, Y. Asai, G. Zhou, N. Tao, Nat. Mater. 2019, 18, 357-363.
J. Bai, A. Daaoub, S. Sangtarash, X. Li, Y. Tang, Q. Zou, H. Sadeghi, S. Liu, X. Huang, Z. Tan, J. Liu, Y. Yang, J. Shi, G. Mészáros, W. Chen, C. Lambert, W. Hong, Nat. Mater. 2019, 18, 364-369.
B. Huang, X. Liu, Y. Yuan, Z.-W. Hong, J.-F. Zheng, L.-Q. Pei, Y. Shao, J.-F. Li, X.-S. Zhou, J.-Z. Chen, S. Jin, B.-W. Mao, J. Am. Chem. Soc. 2018, 140, 17685-17690.
J. Bai, X. Li, Z. Zhu, Y. Zheng, W. Hong, Adv. Mater. 2021, 33, 2005883.
B. Capozzi, J. Xia, O. Adak, E. J. Dell, Z.-F. Liu, J. C. Taylor, J. B. Neaton, L. M. Campos, L. Venkataraman, Nat. Nanotechnol. 2015, 10, 522-527.
R. Stadler, T. Markussen, J. Chem. Phys. 2011, 135, 154109.
T. Papadopoulos, I. Grace, C. Lambert, Phys. Rev. B 2006, 74, 193306.
A. K. Ismael, I. Grace, C. J. Lambert, Phys. Chem. Chem. Phys. 2017, 19, 6416-6421.
A. Kormányos, I. Grace, C. J. Lambert, Phys. Rev. B 2009, 79, 075119.
A. Vezzoli, I. Grace, C. Brooke, K. Wang, C. J. Lambert, B. Xu, R. J. Nichols, S. J. Higgins, Nanoscale 2015, 7, 18949-18955.
K. Wang, A. Vezzoli, I. M. Grace, M. McLaughlin, R. J. Nichols, B. Xu, C. J. Lambert, S. J. Higgins, Chem. Sci. 2019, 10, 2396-2403.
M. Camarasa-Gómez, D. Hernangómez-Pérez, M. S. Inkpen, G. Lovat, E.-D. Fung, X. Roy, L. Venkataraman, F. Evers, Nano Lett. 2020, 20, 6381-6386.
C. Tang, L. Huang, S. Sangtarash, M. Noori, H. Sadeghi, H. Xia, W. Hong, J. Am. Chem. Soc. 2021, 143, 9385-9392.
X. Y. Xiao, B. Q. Xu, N. J. Tao, J. Am. Chem. Soc. 2004, 126, 5370-5371.
P. Zhou, J. Zheng, T. Han, L. Chen, W. Cao, Y. Zhu, D. Zhou, R. Li, Y. Tian, Z. Liu, J. Liu, W. Hong, Nanoscale 2021, 13, 7600-7605.
M. Galperin, M. A. Ratner, A. Nitzan, A. Troisi, Science 2008, 319, 1056-1060.
A. Sowa-Rykowska, J. Adamowski, Phys. Rev. B 2010, 82, 195311.
G. Kuang, S. Z. Chen, L. Yan, K. Q. Chen, X. Shang, P. N. Liu, N. Lin, J. Am. Chem. Soc. 2018, 140, 570-573.
J. Roy, A. K. Jana, D. Mal, Tetrahedron 2012, 68, 6099-6121.
V. Pascanu, Q. Yao, A. Bermejo Gómez, M. Gustafsson, Y. Yun, W. Wan, L. Samain, X. Zou, B. Martín-Matute, Chem. Eur. J. 2013, 19, 17483-17493.
T. Bzeih, T. Naret, A. Hachem, N. Jaber, A. Khalaf, J. Bignon, J.-D. Brion, M. Alami, A. Hamze, Chem. Commun. 2016, 52, 13027-13030.
S. Ciampi, N. Darwish, H. M. Aitken, I. Díez-Pérez, M. L. Coote, Chem. Soc. Rev. 2018, 47, 5146-5164.
S. Cai, W. Deng, F. Huang, L. Chen, C. Tang, W. He, S. Long, R. Li, Z. Tan, J. Liu, J. Shi, Z. Liu, Z. Xiao, D. Zhang, W. Hong, Angew. Chem. Int. Ed. 2019, 58, 3829-3833;
Angew. Chem. 2019, 131, 3869-3873.
M. Baghernejad, D. Z. Manrique, C. Li, T. Pope, U. Zhumaev, I. Pobelov, P. Moreno-García, V. Kaliginedi, C. Huang, W. Hong, C. Lambert, T. Wandlowski, Chem. Commun. 2014, 50, 15975-15978.
B. Capozzi, Q. Chen, P. Darancet, M. Kotiuga, M. Buzzeo, J. B. Neaton, C. Nuckolls, L. Venkataraman, Nano Lett. 2014, 14, 1400-1404.
J. Liu, X. Zhao, J. Zheng, X. Huang, Y. Tang, F. Wang, R. Li, J. Pi, C. Huang, L. Wang, Y. Yang, J. Shi, B.-W. Mao, Z.-Q. Tian, M. R. Bryce, W. Hong, Chem 2019, 5, 390-401.
U. Schröter, E. Scheer, R. Arnold, C. Bacca, T. Böhler, J. Grebing, P. Konrad, V. Kunej, N. Kang, H.-F. Pernau, C. Schirm, Adv. Eng. Mater. 2005, 7, 795-803.
M. J. Frisch, Gaussian 16, Revision a.03. Gaussian, Inc, 2016.
W. Hong, D. Z. Manrique, P. Moreno-García, M. Gulcur, A. Mishchenko, C. J. Lambert, M. R. Bryce, T. Wandlowski, J. Am. Chem. Soc. 2012, 134, 2292-2304.
B. Babić, C. Schönenberger, Phys. Rev. B 2004, 70, 195408.
P. Gehring, H. Sadeghi, S. Sangtarash, C. S. Lau, J. Liu, A. Ardavan, J. H. Warner, C. J. Lambert, G. Andrew, D. Briggs, J. A. Mol, Nano Lett. 2016, 16, 4210-4216.
C. S. Kim, A. M. Satanin, V. B. Shtenberg, J. Exp. Theor. Phys. 2000, 91, 361-368.
K. S. Thygesen, Phys. Rev. Lett. 2008, 100, 166804.
S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J. Schneider, T. Gunst, B. Verstichel, D. Stradi, P. A. Khomyakov, U. G. Vej-Hansen, M.-E. Lee, S. T. Chill, F. Rasmussen, G. Penazzi, F. Corsetti, A. Ojanperä, K. Jensen, M. L. N. Palsgaard, U. Martinez, A. Blom, M. Brandbyge, K. Stokbro, J. Phys. Condens. Matter 2020, 32, 015901.
M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 2002, 65, 165401.

Auteurs

Yan Zheng (Y)

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China.

Ping Duan (P)

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China.

Yu Zhou (Y)

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China.

Chuan Li (C)

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.

Dahai Zhou (D)

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China.

Yaping Wang (Y)

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China.

Li-Chuan Chen (LC)

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China.

Zhiyu Zhu (Z)

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China.

Xiaohui Li (X)

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China.

Jie Bai (J)

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China.

Kai Qu (K)

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.

Tengyang Gao (T)

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China.

Jia Shi (J)

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China.

Junyang Liu (J)

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China.

Qian-Chong Zhang (QC)

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.

Zhong-Ning Chen (ZN)

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.

Wenjing Hong (W)

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering and Institute of Artificial Intelligence and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China.

Classifications MeSH