Fano Resonance in Single-Molecule Junctions.
Charge Transfer
Electrochemical Gating
Fano Resonance
Single-Molecule Junctions
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
04 Oct 2022
04 Oct 2022
Historique:
received:
10
07
2022
pubmed:
19
8
2022
medline:
19
8
2022
entrez:
18
8
2022
Statut:
ppublish
Résumé
The Fano resonance in single-molecule junctions could be created by interaction with discrete and continuous molecular orbitals and enables effective electron transport modulation between constructive and destructive interference within a small energy range. However, direct observation of Fano resonance remains unexplored because of the disappearance of discrete orbitals by molecule-electrode coupling. We demonstrated the room-temperature observation of Fano resonance from electrochemical gated single-molecule conductance and current-voltage measurements of a para-carbazole anion junction. Theoretical calculations reveal that the negative charge on the nitrogen atom induces a localized HOMO on the molecular center, creating Fano resonance by interfering with the delocalized LUMO on the molecular backbone. Our findings demonstrate that the Fano resonance in electron transport through single-molecule junctions opens pathways for designs of interference-based electronic devices.
Identifiants
pubmed: 35981229
doi: 10.1002/anie.202210097
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202210097Subventions
Organisme : National Key Research and Development Program of China
ID : 2017YFA0204902
Organisme : National Natural Science Foundation of China
ID : 22173075, 21933012, 31871877
Organisme : National Natural Science Foundation of China
ID : 22002130
Organisme : National Natural Science Foundation of China
ID : 21601182, 92061117
Organisme : Fundamental Research Funds for the Central Universities
ID : 20720200068
Organisme : Fundamental Research Funds for the Central Universities
ID : 20720190002
Organisme : Strategic Priority Research Program of the Chinese Academy of Sciences
ID : Grant XDB20000000
Informations de copyright
© 2022 Wiley-VCH GmbH.
Références
D. Xiang, X. Wang, C. Jia, T. Lee, X. Guo, Chem. Rev. 2016, 116, 4318-4440.
J. Liu, X. Huang, F. Wang, W. Hong, Acc. Chem. Res. 2019, 52, 151-160.
H. Chen, J. Fraser Stoddart, Nat. Rev. Mater. 2021, 6, 804-828.
R. Frisenda, V. A. E. C. Janssen, F. C. Grozema, H. S. J. van der Zant, N. Renaud, Nat. Chem. 2016, 8, 1099-1104.
T. A. Su, M. Neupane, M. L. Steigerwald, L. Venkataraman, C. Nuckolls, Nat. Rev. Mater. 2016, 1, 16002.
C. J. Lambert, Chem. Soc. Rev. 2015, 44, 875-888.
U. Fano, Phys. Rev. 1961, 124, 1866-1878.
B. Luk′yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, Nat. Mater. 2010, 9, 707-715.
M. F. Limonov, M. V. Rybin, A. N. Poddubny, Y. S. Kivshar, Nat. Photonics 2017, 11, 543-554.
Y. Han, W. J. Gong, H. M. Wang, A. Du, J. Appl. Phys. 2012, 112, 123701.
Y. Han, X. Y. Sui, W. J. Gong, J. Appl. Phys. 2013, 113, 233701.
A. Molle, A. Dubois, J. D. Gorfinkiel, L. S. Cederbaum, N. Sisourat, Phys. Rev. A 2021, 103, 012808.
C. R. Liu, L. Huang, H. Luo, Y. C. Lai, Phys. Rev. Appl. 2020, 13, 034061.
S. Norimoto, S. Nakamura, Y. Okazaki, T. Arakawa, K. Asano, K. Onomitsu, K. Kobayashi, N. Kaneko, Phys. Rev. B 2018, 97, 195313.
X. Cui, F. Qin, Y. Lai, H. Wang, L. Shao, H. Chen, J. Wang, H. Lin, ACS Nano 2018, 12, 12541-12550.
M. Baghernejad, X. Zhao, K. Baruël Ørnsø, M. Füeg, P. Moreno-García, A. V. Rudnev, V. Kaliginedi, S. Vesztergom, C. Huang, W. Hong, P. Broekmann, T. Wandlowski, K. S. Thygesen, M. R. Bryce, J. Am. Chem. Soc. 2014, 136, 17922-17925.
Y. Li, M. Buerkle, G. Li, A. Rostamian, H. Wang, Z. Wang, D. R. Bowler, T. Miyazaki, L. Xiang, Y. Asai, G. Zhou, N. Tao, Nat. Mater. 2019, 18, 357-363.
J. Bai, A. Daaoub, S. Sangtarash, X. Li, Y. Tang, Q. Zou, H. Sadeghi, S. Liu, X. Huang, Z. Tan, J. Liu, Y. Yang, J. Shi, G. Mészáros, W. Chen, C. Lambert, W. Hong, Nat. Mater. 2019, 18, 364-369.
B. Huang, X. Liu, Y. Yuan, Z.-W. Hong, J.-F. Zheng, L.-Q. Pei, Y. Shao, J.-F. Li, X.-S. Zhou, J.-Z. Chen, S. Jin, B.-W. Mao, J. Am. Chem. Soc. 2018, 140, 17685-17690.
J. Bai, X. Li, Z. Zhu, Y. Zheng, W. Hong, Adv. Mater. 2021, 33, 2005883.
B. Capozzi, J. Xia, O. Adak, E. J. Dell, Z.-F. Liu, J. C. Taylor, J. B. Neaton, L. M. Campos, L. Venkataraman, Nat. Nanotechnol. 2015, 10, 522-527.
R. Stadler, T. Markussen, J. Chem. Phys. 2011, 135, 154109.
T. Papadopoulos, I. Grace, C. Lambert, Phys. Rev. B 2006, 74, 193306.
A. K. Ismael, I. Grace, C. J. Lambert, Phys. Chem. Chem. Phys. 2017, 19, 6416-6421.
A. Kormányos, I. Grace, C. J. Lambert, Phys. Rev. B 2009, 79, 075119.
A. Vezzoli, I. Grace, C. Brooke, K. Wang, C. J. Lambert, B. Xu, R. J. Nichols, S. J. Higgins, Nanoscale 2015, 7, 18949-18955.
K. Wang, A. Vezzoli, I. M. Grace, M. McLaughlin, R. J. Nichols, B. Xu, C. J. Lambert, S. J. Higgins, Chem. Sci. 2019, 10, 2396-2403.
M. Camarasa-Gómez, D. Hernangómez-Pérez, M. S. Inkpen, G. Lovat, E.-D. Fung, X. Roy, L. Venkataraman, F. Evers, Nano Lett. 2020, 20, 6381-6386.
C. Tang, L. Huang, S. Sangtarash, M. Noori, H. Sadeghi, H. Xia, W. Hong, J. Am. Chem. Soc. 2021, 143, 9385-9392.
X. Y. Xiao, B. Q. Xu, N. J. Tao, J. Am. Chem. Soc. 2004, 126, 5370-5371.
P. Zhou, J. Zheng, T. Han, L. Chen, W. Cao, Y. Zhu, D. Zhou, R. Li, Y. Tian, Z. Liu, J. Liu, W. Hong, Nanoscale 2021, 13, 7600-7605.
M. Galperin, M. A. Ratner, A. Nitzan, A. Troisi, Science 2008, 319, 1056-1060.
A. Sowa-Rykowska, J. Adamowski, Phys. Rev. B 2010, 82, 195311.
G. Kuang, S. Z. Chen, L. Yan, K. Q. Chen, X. Shang, P. N. Liu, N. Lin, J. Am. Chem. Soc. 2018, 140, 570-573.
J. Roy, A. K. Jana, D. Mal, Tetrahedron 2012, 68, 6099-6121.
V. Pascanu, Q. Yao, A. Bermejo Gómez, M. Gustafsson, Y. Yun, W. Wan, L. Samain, X. Zou, B. Martín-Matute, Chem. Eur. J. 2013, 19, 17483-17493.
T. Bzeih, T. Naret, A. Hachem, N. Jaber, A. Khalaf, J. Bignon, J.-D. Brion, M. Alami, A. Hamze, Chem. Commun. 2016, 52, 13027-13030.
S. Ciampi, N. Darwish, H. M. Aitken, I. Díez-Pérez, M. L. Coote, Chem. Soc. Rev. 2018, 47, 5146-5164.
S. Cai, W. Deng, F. Huang, L. Chen, C. Tang, W. He, S. Long, R. Li, Z. Tan, J. Liu, J. Shi, Z. Liu, Z. Xiao, D. Zhang, W. Hong, Angew. Chem. Int. Ed. 2019, 58, 3829-3833;
Angew. Chem. 2019, 131, 3869-3873.
M. Baghernejad, D. Z. Manrique, C. Li, T. Pope, U. Zhumaev, I. Pobelov, P. Moreno-García, V. Kaliginedi, C. Huang, W. Hong, C. Lambert, T. Wandlowski, Chem. Commun. 2014, 50, 15975-15978.
B. Capozzi, Q. Chen, P. Darancet, M. Kotiuga, M. Buzzeo, J. B. Neaton, C. Nuckolls, L. Venkataraman, Nano Lett. 2014, 14, 1400-1404.
J. Liu, X. Zhao, J. Zheng, X. Huang, Y. Tang, F. Wang, R. Li, J. Pi, C. Huang, L. Wang, Y. Yang, J. Shi, B.-W. Mao, Z.-Q. Tian, M. R. Bryce, W. Hong, Chem 2019, 5, 390-401.
U. Schröter, E. Scheer, R. Arnold, C. Bacca, T. Böhler, J. Grebing, P. Konrad, V. Kunej, N. Kang, H.-F. Pernau, C. Schirm, Adv. Eng. Mater. 2005, 7, 795-803.
M. J. Frisch, Gaussian 16, Revision a.03. Gaussian, Inc, 2016.
W. Hong, D. Z. Manrique, P. Moreno-García, M. Gulcur, A. Mishchenko, C. J. Lambert, M. R. Bryce, T. Wandlowski, J. Am. Chem. Soc. 2012, 134, 2292-2304.
B. Babić, C. Schönenberger, Phys. Rev. B 2004, 70, 195408.
P. Gehring, H. Sadeghi, S. Sangtarash, C. S. Lau, J. Liu, A. Ardavan, J. H. Warner, C. J. Lambert, G. Andrew, D. Briggs, J. A. Mol, Nano Lett. 2016, 16, 4210-4216.
C. S. Kim, A. M. Satanin, V. B. Shtenberg, J. Exp. Theor. Phys. 2000, 91, 361-368.
K. S. Thygesen, Phys. Rev. Lett. 2008, 100, 166804.
S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J. Schneider, T. Gunst, B. Verstichel, D. Stradi, P. A. Khomyakov, U. G. Vej-Hansen, M.-E. Lee, S. T. Chill, F. Rasmussen, G. Penazzi, F. Corsetti, A. Ojanperä, K. Jensen, M. L. N. Palsgaard, U. Martinez, A. Blom, M. Brandbyge, K. Stokbro, J. Phys. Condens. Matter 2020, 32, 015901.
M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 2002, 65, 165401.