Antihyperlipidemic effect and increased antioxidant enzyme levels of aqueous extracts from Liupao tea and green tea in vivo.
Antioxidants
/ therapeutic use
Bile Acids and Salts
Catalase
Cholesterol, LDL
Chromatography, Liquid
Ellagic Acid
Fatty Acids
Glutathione Peroxidase
Humans
Hyperlipidemias
/ drug therapy
Hypolipidemic Agents
/ therapeutic use
Hypoxanthines
/ therapeutic use
Plant Extracts
/ pharmacology
Tandem Mass Spectrometry
Tea
Theophylline
/ therapeutic use
Triglycerides
/ therapeutic use
Liupao tea
antioxidant
bile acid
differential metabolites
hypolipidemic
Journal
Journal of food science
ISSN: 1750-3841
Titre abrégé: J Food Sci
Pays: United States
ID NLM: 0014052
Informations de publication
Date de publication:
Sep 2022
Sep 2022
Historique:
revised:
17
06
2022
received:
12
12
2021
accepted:
12
07
2022
pubmed:
20
8
2022
medline:
23
9
2022
entrez:
19
8
2022
Statut:
ppublish
Résumé
Liupao tea (fermented dark tea) may improve the active function of hyperlipidemia. Utilizing a hyperlipidemia Sprague-Dawley model and UPLC-MS/MS metabolomics, we examined how the effect of Liupao and green tea extracts on hyperlipidemia and antoxidant enzyme levels and compared their constituents. The results showed that the two types of tea could reduce the levels of total cholesterol (TC), total triglyceride, and low-density lipoprotein cholesterol (LDL-C); increase the contents of bile acids and cholesterol in feces; and improve catalase and glutathione peroxidase (GSH-Px) activities. Compared with the model control group, Liupao tea effectively reduced TC and LDL-C levels by 39.53% and 58.55% and increased GSH-Px activity in the liver by 67.07%, which was better than the effect of green tea. A total of 93 compounds were identified from two samples; the amounts of alkaloids and fatty acids increased compared with green tea, and ellagic acid, hypoxanthine, and theophylline with relatively high contents in Liupao tea had a significantly positive correlation with antihyperlipidemic and antioxidant effects. Therefore, Liupao tea had better antihyperlipidemic and antioxidant activities in vivo than green tea, which might be related to the relatively high content of some active substances.
Identifiants
pubmed: 35982642
doi: 10.1111/1750-3841.16274
doi:
Substances chimiques
Antioxidants
0
Bile Acids and Salts
0
Cholesterol, LDL
0
Fatty Acids
0
Hypolipidemic Agents
0
Hypoxanthines
0
Plant Extracts
0
Tea
0
Triglycerides
0
Ellagic Acid
19YRN3ZS9P
Theophylline
C137DTR5RG
Catalase
EC 1.11.1.6
Glutathione Peroxidase
EC 1.11.1.9
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4203-4220Informations de copyright
© 2022 Institute of Food Technologists®.
Références
Abudureheman, B., Yu, X., Fang, D., & Zhang, H. (2022). Enzymatic oxidation of tea catechins and its mechanism. Molecules (Basel, Switzerland), 27(3), 942.
Angulo, P. (2002). Medical progress-Nonalcoholic fatty liver disease. New England Journal of Medicine, 346(16), 1221-1231.
Biaå Ecka-Florjaå Czyk, E., Fabiszewska, A., & Zieniuk, B. O. (2018). Phenolic acids derivatives-Biotechnological methods of synthesis and bioactivity. Current Pharmaceutical Biotechnology, 19(14), 1098-1113.
Binmowyna, M. N., Alfaris, N. A., Almnaizel, A. T., Alsayadi, M. M., & Al-Sanea, E. A. (2020). Hypolipidemic and antioxidant effects of the juice and water seed extracts of two pomegranate species in high-cholesterol diet fed rats. Food Science and Technology, 41, 732-740.
Carrageta, D. F., Dias, T. R., Alves, M. G., Oliveira, P. F., Monteiro, M. P., & Silva, B. M. (2018). Anti-obesity potential of natural methylxanthines. Journal of Functional Foods, 43, 84-94.
Cengiz, S., Mammadov, R., Aykurt, C., & Taşdelen, G. (2015). Variations in antioxidant enzyme levels of rats exposed to ethanol extracts of Convolvulus species. Industrial Crops and Products, 74, 304-308.
Chambers, K. F., Day, P. E., Aboufarrag, H. T., & Kroon, P. A. (2019). Polyphenol effects on cholesterol metabolism via bile acid biosynthesis, CYP7A1: A review. Nutrients, 11(11), 2588.
Chen, D., Zhao, Y., Peng, J., Zhang, Y., Gao, J., Wu, W., Xie, D., Hu, Z., Lin, Z., & Dai, W. (2021). Metabolomics analysis reveals four novel N-ethyl-2-pyrrolidinone-substituted theaflavins as storage-related marker compounds in black tea. Journal of Agricultural and Food Chemistry, 69(46), 14037-14047.
Chen, X., Wang, P., Wei, M., Lin, X., Gu, M., Fang, W., Zheng, Y., Zhao, F., Jin, S., & Ye, N. (2021). Lipidomics analysis unravels changes from flavor precursors in different processing treatments of purple-leaf tea. Journal of the Science of Food and Agriculture, 102, 3730-3741.
Chupeerach, C., Aursalung, A., Watcharachaisoponsiri, T., Whanmek, K., Thiyajai, P., Yosphan, K., Sritalahareuthai, V., Sahasakul, Y., Santivarangkna, C., & Suttisansanee, U. (2021). The effect of steaming and fermentation on nutritive values, antioxidant activities, and inhibitory properties of tea leaves. Foods, 10(1), 117.
Feng, L., Liu, P., Zheng, P., Zhang, L., Zhou, J., Gong, Z., Yu, Y., Gao, S., Zheng, L., Wang, X., & Wan, X. (2020). Chemical profile changes during pile fermentation of Qingzhuan tea affect inhibition of α-amylase and lipase. Scientific Reports, 10(1), 3489.
Gong, Z.-P., Ouyang, J., Wu, X.-L., Zhou, F., Lu, D.-M., Zhao, C.-J., Liu, C.-F., Zhu, W., Zhang, J.-C., Li, N.-X., Miao, F., Song, Y.-X., Li, Y.-L., Wang, Q.-Y., Lin, H.-Y., Zeng, X., Cai, S.-X., Huang, J.-A., Liu, Z.-H., & Zhu, M.-Z. (2020). Dark tea extracts: Chemical constituents and modulatory effect on gastrointestinal function. Biomedicine & Pharmacotherapy, 130, 110514.
Gu, X. Y., Li, Z., Zheng, Y. N., Liu, Y. M., & Wang, Q. K. (2016). Anti-obesity effect of hypoxanthine in nutritionally obese mice. Food Science, 37(15), 253-258. In Chinese.
Hinojosa-Nogueira, D., Pérez-Burillo, S., Pastoriza De La Cueva, S., & Ángel Rufián-Henares, J. (2021). Green and white teas as health-promoting foods. Food & Function, 12(9), 3799-3819.
Hirsch, N., Konstantinov, A., Anavi, S., Aronis, A., Hagay, Z., Madar, Z., & Tirosh, O. (2016). Prolonged feeding with green tea polyphenols exacerbates cholesterol-induced fatty liver disease in mice. Molecular Nutrition & Food Research, 60(12), 2542-2553.
Hu, S., He, C., Li, Y., Yu, Z., Chen, Y., Wang, Y., & Ni, D. (2021). Changes of fungal community and non-volatile metabolites during pile-fermentation of dark green tea. Food Research International, 147, 110472.
Huang, F., Zheng, X., Ma, X., Jiang, R., Zhou, W., Zhou, S., Zhang, Y., Lei, S., Wang, S., Kuang, J., Han, X., Wei, M., You, Y., Li, M., Li, Y., Liang, D., Liu, J., Chen, T., Yan, C., … Jia, W. (2019). Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism. Nature Communication, 10(1), Article number: 4971.
Hussain, A., Cho, J. S., Kim, J.-S., & Lee, Y. I. (2021). Protective effects of polyphenol enriched complex plants extract on metabolic dysfunctions associated with obesity and related nonalcoholic fatty liver diseases in high fat diet-induced C57BL/6 mice. Molecules (Basel, Switzerland), 26(2), 302.
Karak, P. (2019). Biological activities of flavonoids: An overview. International Journal of Pharmaceutical Sciences And Research, 10(4), 1567-1574.
Kerio, L. C., Wachira, F. N., Wanyoko, J. K., & Rotich, M. K. (2012). Characterization of anthocyanins in Kenyan teas: Extraction and identification. Food Chemistry, 131(1), 31-38.
Kumar, S., & Pandey, A. K (2013). Chemistry and biological activities of flavonoids: An overview. Scientific World Journal, 2013, Article ID 162750.
Kuo, K.-L., Weng, M.-S., Chiang, C.-T., Tsai, Y.-J., Lin-Shiau, S.-Y., & Lin, J.-K. (2005). Comparative studies on the hypolipidemic and growth suppressive effects of oolong, black, pu-erh, and green tea leaves in rats. Journal of Agricultural and Food Chemistry, 53(2), 480-489.
Lee, G.-S., Byun, H.-S., Kim, M.-H., Lee, B.-M., Ko, S.-H., Jung, E.-M., Gwak, K.-S., Choi, I.-G., Kang, H.-Y., Jo, H.-J., Lee, H.-J., & Jeung, E.-B. (2008). The beneficial effect of the sap of Acer mono in an animal with low-calcium diet-induced osteoporosis-like symptoms. British Journal of Nutrition, 100(5), 1011-1018.
Lee, H.-W., Ko, Y.-H., & Lim, S.-B. (2012). Effects of selected plant extracts on anti-oxidative enzyme activities in rats. Food Chemistry, 132(3), 1276-1280.
Li, J., Wu, S., Yu, Q., Wang, J., Deng, Y., Hua, J., Zhou, Q., Yuan, H., & Jiang, Y. (2022). Chemical profile of a novel ripened Pu-erh tea and its metabolic conversion during pile fermentation. Food Chemistry, 378, 132126.
Li, X., Suo, J., Huang, X., Dai, H., Bian, H., Zhu, M., Lin, W., & Han, N. (2021). Whole grain qingke attenuates high-fat diet-induced obesity in mice with alterations in gut microbiota and metabolite profile. Frontiers in Nutrition, 8, 761727.
Lin, F.-J., Wei, X.-L., Liu, H.-Y., Li, H., Xia, Y., Wu, D.-T., Zhang, P.-Z., Gandhi, G. R., Li, H.-B., & Gan, R.-Y. (2021). State-of-the-art review of dark tea: From chemistry to health benefits. Trends in Food Science and Technology, 109, 126-138.
Liu, H., Xu, Y., Wu, J., Wen, J., Yu, Y., An, K., & Zou, B. (2021). GC-IMS and olfactometry analysis on the tea aroma of Yingde black teas harvested in different seasons. Food Research International, 150, 110784.
Liu, Z., Chen, Q., Zhang, C., & Ni, L. (2022). Comparative study of the anti-obesity and gut microbiota modulation effects of green tea phenolics and their oxidation products in high-fat-induced obese mice. Food Chemistry, 367, 130735.
Lv, H.-P., Dai, W.-D., Tan, J.-F., Guo, L., Zhu, Y., & Lin, Z. (2015). Identification of the anthocyanins from the purple leaf coloured tea cultivar Zijuan (Camellia sinensis var. assamica) and characterization of their antioxidant activities. Journal of Functional Foods, 17, 449-458.
Lv, H.-P., Zhang, Y.-J., Lin, Z., & Liang, Y.-R. (2013). Processing and chemical constituents of Pu-erh tea: A review. Food Research International, 53(2SI), 608-618.
Lv, H.-P., Zhang, Y., Shi, J., & Lin, Z. (2017). Phytochemical profiles and antioxidant activities of Chinese dark teas obtained by different processing technologies. Food Research International, 100, 486-493.
Ma, B., Wang, J., Xu, C., Wang, Z., Yin, D., Zhou, B., & Ma, C. (2022). Interrelation analysis between phenolic compounds and in vitro antioxidant activities in Pu-erh tea. Lwt, 158, 113117.
Mandimika, T., Paturi, G., De Guzman, C. E., Butts, C. A., Nones, K., Monro, J. A., Butler, R. C., Joyce, N. I., Mishra, S., & Ansell, J. (2012). Effects of dietary broccoli fibre and corn oil on serum lipids, faecal bile acid excretion and hepatic gene expression in rats. Food Chemistry, 131(4), 1272-1278.
McDonald, P., & Henderson, A. R (1964). Determination of water-soluble carbohydrates in grass. Journal of the Science of Food and Agriculture, 15(6), 395-398.
Moe, L. A. (2013). Amino acids in the rhizosphere: From plants to microbes. American Journal of Botany, 100(9), 1692-1705.
Nagano, M., Kuroki, S., Mizuta, A., Furukawa, M., Noshiro, M., Chijiiwa, K., & Tanaka, M. (2004). Regulation of bile acid synthesis under reconstructed enterohepatic circulation in rats. Steroids, 69(10), 701-709.
Ni, W. J., Chen, X. X., Wei, S. Y., Lan, L. L., Qiu, R. J., Ling, Y. P., Zhou, D. S., Wu, Z. M., Cao, Z. H., Yu, C. P., & Zeng, Y. (2021). Study on the mechanism of active components of Liupao tea on 3CLpro based on HPLC-DAD fingerprint and molecular docking technique. Journal of Food Biochemistry, 45(5), e13707.
Ogawa, K., Hirose, S., Nagaoka, S., & Yanase, E. (2015). Interaction between tea polyphenols and bile acid inhibits micellar cholesterol solubility. Journal of Agricultural and Food Chemistry, 64(1), 204-209.
Pan, Y., Long, X., Yi, R., & Zhao, X. (2018). Polyphenols in Liubao tea can prevent CCl4-induced hepatic damage in mice through its antioxidant capacities. Nutrients, 10(9), 1280.
Peng, C.-X., Wang, Q.-P., Liu, H.-R., Gao, B., Sheng, J., & Gong, J. (2013). Effects of Zijuan pu-erh tea theabrownin on metabolites in hyperlipidemic rat feces by Py-GC/MS. Journal of Analytical and Applied Pyrolysis, 104, 226-233.
Pérez-Gálvez, R., GarcãA-Moreno, P. J., Morales-Medina, R. O., Guadix, A., & Guadix, E. M. (2015). Bile acid binding capacity of fish protein hydrolysates from discard species of the West Mediterranean Sea. Food & Function, 6(4), 1261-1267.
Pikuleva, I. A. (2006). Cytochrome P450s and cholesterol homeostasis. Pharmacology & Therapeutics, 112(3), 761-773.
Rashmi, H. B., & Negi, P. S. (2020). Phenolic acids from vegetables: A review on processing stability and health benefits. Food Research International, 136, 109298.
Shi, J., Ma, W., Wang, C., Wu, W., Tian, J., Zhang, Y., Shi, Y., Wang, J., Peng, Q., Lin, Z., & Lv, H. (2021). Impact of various microbial-fermented methods on the chemical profile of dark tea using a single raw tea material. Journal of Agricultural and Food Chemistry, 69(14), 4210-4222.
Simeonova, R., Kondeva-Burdina, M., Vitcheva, V., & Mitcheva, M. (2014). Some in vitro/in vivo chemically-induced experimental models of liver oxidative stress in rats. BioMed Research International, 2014, 706302.
Srikrishna, D., Godugu, C., & Dubey, P. K. (2018). A review on pharmacological properties of coumarins. Mini-reviews in Medicinal Chemistry, 18(2), 113-141.
Tang, H., Zeng, Q., Ren, N., Wei, Y., He, Q., Chen, M., & Pu, P. (2021). Kaempferide improves oxidative stress and inflammation by inhibiting the TLR4/IκBα/NF-κB pathway in obese mice. Iranian Journal of Basic Medical Sciences, 24(4), 493-498.
Wang, D., Shi, L., Fan, X., Lou, H., Li, W., Li, Y., Ren, D., & Yi, L. (2022). Development and validation of an efficient HILIC-QQQ-MS/MS method for quantitative and comparative profiling of 45 hydrophilic compounds in four types of tea (Camellia sentences). Food Chemistry, 371, 131201.
Wang, Q., Šarkanj, B., Jurasovic, J., Chisti, Y., Sulyok, M., Gong, J., Sirisansaneeyakul, S., & Komes, D. (2019). Evaluation of microbial toxins, trace elements and sensory properties of a high-theabrownins instant Pu-erh tea produced using Aspergillus tubingensis via submerged fermentation. International Journal of Food Science & Technology, 54(5), 1541-1549.
Wu, W., Hu, Y., Zhang, S., Liu, D., Li, Q., Lin, Y., & Liu, Z. (2021). Untargeted metabolomic and lipid metabolism-related gene expression analyses of the effects and mechanism of aged Liupao tea treatment in HFD-induced obese mice. RSC Advances, 11(38), 23791-23800.
Wu, Y., Sun, H., Yi, R., Tan, F., & Zhao, X. (2021). Anti-obesity effect of Liupao tea extract by modulating lipid metabolism and oxidative stress in high-fat-diet-induced obese mice. Journal of Food Science, 86(1), 215-227.
Xia, Y., Tan, D., Akbary, R., Kong, J., Seviour, R., & Kong, Y. (2019). Aqueous raw and ripe Pu-erh tea extracts alleviate obesity and alter cecal microbiota composition and function in diet-induced obese rats. Applied Microbiology and Biotechnology, 103(4), 1823-1835.
Xie, Y., Zheng, Y., Dai, X., Wang, Q., Cao, J., & Xiao, J. (2015). Seasonal dynamics of total flavonoid contents and antioxidant activity of Dryopteris erythrosora. Food Chemistry, 186, 113-118.
Xu, Y., Liang, P.-L., Chen, X.-L., Gong, M.-J., Zhang, L., Qiu, X.-H., Zhang, J., Huang, Z.-H., & Xu, W. (2021). The impact of citrus-tea cofermentation process on chemical composition and contents of pu-erh tea: An integrated metabolomics study. Frontiers In Nutrition, 8, 737539.
Yahayu, M., Ghazali, N. A., Yusoff, I. M., Ngadiran, S., Gomaa, S. E., Dailin, D. J., Abd Malek, R., Hanapi, S. Z., Mat Sarip, S. H., Ho, T., & El Enshasy, H. (2020). Green tea: A biofactory for antioxidant compounds. Bioscience Research, 17(4), 2888-2906.
Ye, J., Zhao, Y., Chen, X., Zhou, H., Yang, Y., Zhang, X., Huang, Y., Zhang, N., Lui, E. M. K., & Xiao, M. (2021). Pu-erh tea ameliorates obesity and modulates gut microbiota in high fat diet fed mice. Food Research International, 144, 110360.
Yu, P., Huang, H., Zhao, X., Zhong, N., & Zheng, H. (2021). Dynamic variation of amino acid content during black tea processing: A review. Food Review International, 7, 14.
Zhao, M., Zhang, D., Su, X.-Q., Duan, S.-M., Wan, J.-Q., Yuan, W.-X., Liu, B.-Y., Ma, Y., & Pan, Y.-H. (2015). An integrated metagenomics/metaproteomics investigation of the microbial communities and enzymes in solid-state fermentation of pu-erh tea. Scientific Report, 5(1), Article number: 10117.
Zhao, Y., Li, H., Baoyao, W., Jianwen, T., & Ning, X. (2015). Study on the effect of Liupao tea extract on intestinal flora of high-fat mice. Food Industry Science & Technology, 36(21), 364-367. In Chinese.
Zhou, B., Ma, C., Ren, X., Xia, T., Li, X., & Wu, Y. (2019). Production of theophylline via aerobic fermentation of pu-erh tea using tea-derived fungi. BMC Microbiology, 19(1), Article number: 261.
Zhu, M.-Z., Li, N., Zhou, F., Ouyang, J., Lu, D.-M., Xu, W., Li, J., Lin, H.-Y., Zhang, Z., Xiao, J.-B., Wang, K.-B., Huang, J.-A., Liu, Z.-H., & Wu, J.-L. (2020). Microbial bioconversion of the chemical components in dark tea. Food Chemistry, 312, 126043.