Infection- or vaccine mediated immunity reduces SARS-CoV-2 transmission, but increases competitiveness of Omicron in hamsters.


Journal

bioRxiv : the preprint server for biology
Titre abrégé: bioRxiv
Pays: United States
ID NLM: 101680187

Informations de publication

Date de publication:
29 Jul 2022
Historique:
entrez: 19 8 2022
pubmed: 20 8 2022
medline: 20 8 2022
Statut: epublish

Résumé

Omicron has demonstrated a competitive advantage over Delta in vaccinated people. To understand this, we designed a transmission chain experiment using naïve, intranasally (IN) or intramuscularly (IM) vaccinated, and previously infected (PI) hamsters. Vaccination and previous infection protected animals from disease and virus replication after Delta and Omicron dual challenge. A gradient in transmission blockage was observed: IM vaccination displayed moderate transmission blockage potential over three airborne chains (approx. 70%), whereas, IN vaccination and PI blocked airborne transmission in >90%. In naïve hamsters, Delta completely outcompeted Omicron within and between hosts after dual infection in onward transmission. Although Delta also outcompeted Omicron in the vaccinated and PI transmission chains, an increase in Omicron competitiveness was observed in these groups. This correlated with the increase in the strength of the humoral response against Delta, with the strongest response seen in PI animals. These data highlight the continuous need to assess the emergence and spread of novel variants in populations with pre-existing immunity and address the additional evolutionary pressure this may exert on the virus.

Identifiants

pubmed: 35982658
doi: 10.1101/2022.07.29.502072
pmc: PMC9387121
pii:
doi:

Types de publication

Preprint

Langues

eng

Subventions

Organisme : NIGMS NIH HHS
ID : T32 GM008169
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM142617
Pays : United States
Organisme : Intramural NIH HHS
ID : ZIA AI001179
Pays : United States

Commentaires et corrections

Type : UpdateIn

Références

Nat Commun. 2021 Aug 17;12(1):4985
pubmed: 34404778
N Engl J Med. 2022 Mar 31;386(13):1288-1290
pubmed: 35139269
Viruses. 2022 Mar 13;14(3):
pubmed: 35337002
Mucosal Immunol. 2022 Apr;15(4):584-594
pubmed: 35505121
Science. 2022 May 6;376(6593):eabn4947
pubmed: 35289632
Nat Microbiol. 2020 Apr;5(4):562-569
pubmed: 32094589
Eur J Med Res. 2022 Jun 2;27(1):81
pubmed: 35655237
Signal Transduct Target Ther. 2022 Apr 18;7(1):124
pubmed: 35436986
F1000Res. 2015 Oct 15;4:1075
pubmed: 26834992
J Med Virol. 2022 Jun;94(6):2833-2836
pubmed: 35128693
Signal Transduct Target Ther. 2022 Apr 28;7(1):141
pubmed: 35484110
Nature. 2022 Mar;603(7902):693-699
pubmed: 35062016
Nat Commun. 2021 Oct 20;12(1):6103
pubmed: 34671049
Science. 2022 Jul 22;377(6604):428-433
pubmed: 35737809
BMC Res Notes. 2016 Feb 12;9:88
pubmed: 26868221
Nat Microbiol. 2022 Feb;7(2):213-223
pubmed: 35017676
Euro Surveill. 2020 Jan;25(3):
pubmed: 31992387
Nature. 2022 Feb;602(7898):664-670
pubmed: 35016195
Lancet. 2022 Feb 12;399(10325):625-626
pubmed: 35063123
NPJ Vaccines. 2021 May 10;6(1):67
pubmed: 33972565
Emerg Microbes Infect. 2021 Dec;10(1):1284-1292
pubmed: 34120579
Sci Immunol. 2022 Jun 23;:eabq4450
pubmed: 35737747
Science. 2022 Mar 11;375(6585):1151-1154
pubmed: 35084937
Genome Res. 2010 Sep;20(9):1297-303
pubmed: 20644199
Antiviral Res. 2017 Jul;143:30-37
pubmed: 28389142
Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14764-9
pubmed: 9405687
Sci Transl Med. 2021 Aug 18;13(607):
pubmed: 34315826
Cell. 2022 Feb 3;185(3):467-484.e15
pubmed: 35081335
Nature. 2022 Feb;602(7898):671-675
pubmed: 35016199
Nature. 2022 Mar;603(7902):706-714
pubmed: 35104837
Cell. 2020 Dec 23;183(7):1901-1912.e9
pubmed: 33248470
Med (N Y). 2022 May 13;3(5):325-334.e4
pubmed: 35399324
Immun Inflamm Dis. 2022 Apr;10(4):e604
pubmed: 35349752
J Clin Med. 2022 Jun 10;11(12):
pubmed: 35743421
Nat Med. 2022 Jul;28(7):1491-1500
pubmed: 35395151
Nat Commun. 2021 Oct 7;12(1):5868
pubmed: 34620866
Nat Struct Mol Biol. 2020 Aug;27(8):763-767
pubmed: 32647346
Nature. 2021 Aug;596(7871):276-280
pubmed: 34237773
J Gen Virol. 2005 Aug;86(Pt 8):2269-2274
pubmed: 16033974
J Virol. 2009 Jan;83(2):712-21
pubmed: 18971274
Nat Methods. 2012 Mar 04;9(4):357-9
pubmed: 22388286
Metabol Open. 2022 Mar 17;14:100180
pubmed: 35313532
Cell. 2022 Apr 28;185(9):1549-1555.e11
pubmed: 35427477
Bioinformatics. 2009 Aug 15;25(16):2078-9
pubmed: 19505943
Antiviral Res. 2022 Feb;198:105253
pubmed: 35066015
Clin Microbiol Infect. 2021 Dec;27(12):1762-1771
pubmed: 34582980
PLoS Pathog. 2021 Jan 19;17(1):e1009195
pubmed: 33465158
Nature. 2020 May;581(7807):215-220
pubmed: 32225176
Cell Rep. 2022 Mar 15;38(11):110515
pubmed: 35263638

Auteurs

Julia R Port (JR)

Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.

Claude Kwe Yinda (CK)

Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.

Jade C Riopelle (JC)

Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.

Zachary A Weishampel (ZA)

Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.

Taylor A Saturday (TA)

Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.

Victoria A Avanzato (VA)

Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.

Jonathan E Schulz (JE)

Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.

Myndi G Holbrook (MG)

Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.

Kent Barbian (K)

Genomics Research Section, Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.

Rose Perry-Gottschalk (R)

Rocky Mountain Visual and Medical Arts Unit, Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.

Elaine Haddock (E)

Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.

Craig Martens (C)

Genomics Research Section, Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.

Carl I Shaia (CI)

Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.

Teresa Lambe (T)

The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.

Sarah C Gilbert (SC)

The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.

Neeltje van Doremalen (N)

Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.

Vincent J Munster (VJ)

Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.

Classifications MeSH