Myrrhone inhibits the progression of hepatic fibrosis by regulating the abnormal activation of hepatic stellate cells.
Animals
Mice
Carbon Tetrachloride
/ toxicity
Collagen
/ metabolism
Collagen Type I
/ metabolism
Hepatic Stellate Cells
/ drug effects
Liver
/ metabolism
Liver Cirrhosis
/ chemically induced
Molecular Docking Simulation
Transforming Growth Factor beta1
/ metabolism
Plant Extracts
/ metabolism
Commiphora
Phytotherapy
Myrrhone
Smad3
hepatic fibrosis
hepatic stellate cell
Journal
Journal of biochemical and molecular toxicology
ISSN: 1099-0461
Titre abrégé: J Biochem Mol Toxicol
Pays: United States
ID NLM: 9717231
Informations de publication
Date de publication:
Nov 2022
Nov 2022
Historique:
revised:
03
06
2022
received:
16
03
2022
accepted:
21
07
2022
pubmed:
20
8
2022
medline:
18
11
2022
entrez:
19
8
2022
Statut:
ppublish
Résumé
We focus on exploring the antihepatic fibrosis effect of Myrrhone (Myr), a compound extracted from myrrh, and its effective target. Mouse hepatic stellate cells (HSCs) were cultured in vitro and activated by transforming growth factor-β induction. After Myr intervention, cell viability was assessed by the Cell Counting Kit-8 assay. The α-smooth muscle actin(α-SMA) and Collagen I levels were measured by immunofluorescence, and the expressions of tumor necrosis factor-α, interleukin-6, and matrix metalloproteinase-9 were examined by enzyme-linked immunosorbent assay, and the p-Smad3 protein level in HSCs was determined by Western Blot. Small molecule-protein docking and pull-down experiments were conducted to validate the binding capacity between Nard and Smad3. In animal experiments, a mouse model of hepatic fibrosis was established with carbon tetrachloride. Myr was administered by gavage daily to determine the serum alanine aminotransferase and aspartate transaminase levels. The severity of hepatic fibrosis was evaluated by Masson staining, the α-SMA and Collagen I expressions were measured by immunohistochemistry, and the histopathological changes were examined by Sirius red and hematoxylin and eosin staining. Myr suppressed the abnormal activation of HSCs, inhibited the cell viability, downregulated the α-SMA and Collagen I, and inhibited the p-Smad3 expression. After silencing Smad3, the effect of Myr was inhibited. Molecular docking and pull-down experiments revealed the presence of a targeted binding relationship between Myr and Smad3. In mouse experiments, Myr could inhibit hepatic fibrosis. This study discovers that Myr can affect the phosphorylation of Smad3, and inhibit the activation of HSCs and the progression of hepatic fibrosis.
Substances chimiques
Carbon Tetrachloride
CL2T97X0V0
Collagen
9007-34-5
Collagen Type I
0
Transforming Growth Factor beta1
0
Plant Extracts
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e23177Informations de copyright
© 2022 Wiley Periodicals LLC.
Références
R. Okada, K. Suzuki, Y. Ito, K. Nishio, Y. Ishida, S. Kawai, Y. Goto, M. Naito, K. Wakai, N. Hamajima, Ren. Fail. 2020, 29(8), 967.
P. Zhang, Z. Gan, L. Tang, L. Zhou, X. Huang, J. Wang, Life Sci. 2021, (5), 119404.
X. Li, Y. Xing, D. Mao, L. Ying, Y. Luan, M. Xu, H. Wang, C. Li, Y. Li, S. Zheng, Z. Li, J. Hu, Z. Li, H. Wang, Y. Luan, Biomed. Pharmacother. 2021, 133, 110960.
S. Tariq, B. L. Koloko, A. Malik, S. Rehman, B. Ijaz, A. A. Shahid, J. Ethnopharmacol. 2021, 272(1), 113938.
G. Shiha, R. Soliman, N. Mikhail, A. Hassan, T. Amer, M. Eslam, J. Hepatol. 2020, 73, S107.
X. L. Wu, W. Z. Zeng, M. D. Jiang, J. P. Qin, H. Xu, World J. Gastroenterol. 2008, 14(13), 2100.
G. Latella, A. Vetuschi, R. Sferra, V. Catitti, A. D'Angelo, G. Zanninelli, K. C. Flanders, E. Gaudio, Liver Int. 2010, 29(7), 997.
E. Cenci, F. Messina, E. Rossi, F. Epifano, M. C. Marcotullio, Nat. Prod. Commun. 2012, 7(2), 143.
O. Purps, B. Lahme, A. X. Gressner, N. M. Meindl-Beinker, S. Dooley, Biochem. Biophys. Res. Commun. 2007, 353(3), 841.
F. Berg, B. Delvoux, C. Gao, J. H. Westhoff, K. Breitkopf, A. M. Gressner, S. Dooley, Signal Transduction 2015, 2(1-2), 11.
L. Dai, H. Ji, X. Kong, Y. Zhang, Acta Pharmacol. Sin. 2010, 31(1), 27.
T. R. Marques, A. A. Caetano, P. H. S. Cesar, M. A. Braga, G. H. A. Machado, R.V. de Sousa, A. D. Corrêa, J. Food Biochem. 2018, 42, e12670.
S. P. Verhoef, S. G. Camps, F. G. Bouwman, E. C. Mariman, K. R. Westerterp, PLoS One 2013, 8(3), e58011.
J. Stipursky, F. C. A. Gomes, Glia 2007, 55, 1023.
C. Zhao, W. Chen, L. Yang, L. Chen, S. A. Stimpson, A. M. Diehl, Biochem. Biophys. Res. Commun. 2006, 350(2), 385.
C. Wang, X. Song, Y. Li, F. Han, S. Gao, X. Wang, S. Xie, C. Lv, PLoS One 2013, 8(8), e70725.
W. Y. Sun, Y. J. Gu, X. R. Li, J. C. Sun, J. J. Du, J. Y. Chen, Y. Ma, Q. T. Wang, W. Wei, Cell Death Dis. 2020, 11(5), 389.
M. N. Quan, L. Hsieh, L. Dohil, R. Dohil, R. O. Newbury, R. Kurten, F. J. Moawad, S. S. Aceves, Clin. Transl. Gastroenterol. 2020, 11(4), e00164.
M. W. Feinberg, M. Watanabe, M. A. Lebedeva, A. S. Depina, J. Hanai, T. Mammoto, J. P. Frederick, X. F. Wang, V. P. Sukhatme, M. K. Jain, J. Biol. Chem. 2004, 279(16), 16388.
C. Y. Han, J. H. Koo, S. H. Kim, S. Gardenghi, S. Rivella, P. Strnad, S. J. Hwang, S. G. Kim, Nat. Commun. 2016, 7, 13817.