Nematic bits and universal logic gates.
Journal
Science advances
ISSN: 2375-2548
Titre abrégé: Sci Adv
Pays: United States
ID NLM: 101653440
Informations de publication
Date de publication:
19 Aug 2022
19 Aug 2022
Historique:
entrez:
19
8
2022
pubmed:
20
8
2022
medline:
20
8
2022
Statut:
ppublish
Résumé
Liquid crystals (LCs) can host robust topological defect structures that essentially determine their optical and elastic properties. Although recent experimental progress enables precise control over nematic LC defects, their practical potential for information storage and processing has yet to be explored. Here, we introduce the concept of nematic bits (nbits) by exploiting a quaternionic mapping from LC defects to the Poincaré-Bloch sphere. Through theory and simulations, we demonstrate how single-nbit operations can be implemented using electric fields, to construct LC analogs of Pauli, Hadamard, and other elementary logic gates. Using nematoelastic interactions, we show how four-nbit configurations can realize universal classical NOR and NAND gates. Last, we demonstrate the implementation of generalized logical functions that take values on the Poincaré-Bloch sphere. These results open a route toward the implementation of classical digital and nonclassical continuous computation strategies in topological soft matter systems.
Identifiants
pubmed: 35984880
doi: 10.1126/sciadv.abp8371
pmc: PMC9390992
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
eabp8371Références
Soft Matter. 2021 Aug 11;17(31):7408-7417
pubmed: 34318862
Phys Rev A. 1995 Nov;52(5):3457-3467
pubmed: 9912645
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jun;71(6 Pt 1):061709
pubmed: 16089754
Rep Prog Phys. 2019 Dec;82(12):122401
pubmed: 31514179
Science. 2011 Jul 1;333(6038):62-5
pubmed: 21719671
Nature. 2020 Jan;577(7792):636-640
pubmed: 31959986
Nat Commun. 2020 Mar 18;11(1):1442
pubmed: 32188858
Science. 2011 Jun 3;332(6034):1196-201
pubmed: 21636773
Phys Rev E. 2020 Mar;101(3-1):032701
pubmed: 32289986
Phys Rev Lett. 1995 Aug 21;75(8):1518-1521
pubmed: 10060318
Sci Adv. 2022 Feb 25;8(8):eabg9060
pubmed: 35196084
Sci Rep. 2016 May 20;6:26361
pubmed: 27198649
Science. 2019 Sep 27;365(6460):1449-1453
pubmed: 31604273
Phys Rev Lett. 2020 Feb 28;124(8):088001
pubmed: 32167362
Nature. 2021 Oct;598(7879):39-48
pubmed: 34616053
Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):14629-14631
pubmed: 32541021
Nature. 2013 Dec 12;504(7479):237-41
pubmed: 24336284
Phys Rev A Gen Phys. 1988 Aug 15;38(4):2132-2147
pubmed: 9900613
Science. 2007 Feb 9;315(5813):832-5
pubmed: 17289994
Soft Matter. 2021 Mar 4;17(8):2265-2278
pubmed: 33471022
Science. 2006 Aug 18;313(5789):954-8
pubmed: 16917058
Nat Commun. 2017 Apr 25;8:15169
pubmed: 28440273
Science. 1994 Nov 11;266(5187):1021-4
pubmed: 7973651
Opt Lett. 2018 Jan 15;43(2):271-274
pubmed: 29328257
Science. 2011 Jul 1;333(6038):46-7
pubmed: 21719665
Phys Rev Lett. 2006 Feb 3;96(4):048301
pubmed: 16486901
Nature. 2010 Mar 4;464(7285):45-53
pubmed: 20203602
Sci Adv. 2019 Feb 15;5(2):eaav4283
pubmed: 30793033
Nature. 2013 May 30;497(7451):619-23
pubmed: 23676681
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jun;81(6 Pt 1):061701
pubmed: 20866426
Phys Rev E. 2016 Oct;94(4-1):042706
pubmed: 27841517
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 1):040701
pubmed: 20481670