Probabilistic forecasts of international bilateral migration flows.
Bayesian hierarchical model
bilateral migration flows
international migration
probabilistic forecasting
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
30 08 2022
30 08 2022
Historique:
entrez:
22
8
2022
pubmed:
23
8
2022
medline:
25
8
2022
Statut:
ppublish
Résumé
We propose a method for forecasting global human migration flows. A Bayesian hierarchical model is used to make probabilistic projections of the 39,800 bilateral migration flows among the 200 most populous countries. We generate out-of-sample forecasts for all bilateral flows for the 2015 to 2020 period, using models fitted to bilateral migration flows for five 5-y periods from 1990 to 1995 through 2010 to 2015. We find that the model produces well-calibrated out-of-sample forecasts of bilateral flows, as well as total country-level inflows, outflows, and net flows. The mean absolute error decreased by 61% using our method, compared to a leading model of international migration. Out-of-sample analysis indicated that simple methods for forecasting migration flows offered accurate projections of bilateral migration flows in the near term. Our method matched or improved on the out-of-sample performance using these simple deterministic alternatives, while also accurately assessing uncertainty. We integrate the migration flow forecasting model into a fully probabilistic population projection model to generate bilateral migration flow forecasts by age and sex for all flows from 2020 to 2025 through 2040 to 2045.
Identifiants
pubmed: 35994637
doi: 10.1073/pnas.2203822119
pmc: PMC9436307
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2203822119Subventions
Organisme : NICHD NIH HHS
ID : R01 HD070936
Pays : United States
Références
Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15269-74
pubmed: 18824693
Biometrics. 2009 Dec;65(4):1254-61
pubmed: 19432783
Demography. 2018 Oct;55(5):1979-1999
pubmed: 30276667
Sci Data. 2019 Jun 17;6(1):82
pubmed: 31209218
Demography. 2015 Jun;52(3):1035-59
pubmed: 25962866
Proc Natl Acad Sci U S A. 2022 Aug 30;119(35):e2203822119
pubmed: 35994637
Demography. 2013 Jun;50(3):777-801
pubmed: 23494599
Demography. 2011 Aug;48(3):815-39
pubmed: 21748544
Science. 2014 Nov 28;346(6213):1063-4
pubmed: 25430759
Demography. 2021 Feb 1;58(1):51-74
pubmed: 33834241
Popul Stud (Camb). 2018 Nov;72(3):339-355
pubmed: 29873285
Science. 2014 Mar 14;343(6176):1203-5
pubmed: 24626916
J Stat Softw. 2016 Dec;75:
pubmed: 28077933
Demography. 2015 Oct;52(5):1627-50
pubmed: 26358699
Lancet. 2021 Mar 13;397(10278):952-954
pubmed: 33581803
Proc Natl Acad Sci U S A. 2019 Jan 2;116(1):116-122
pubmed: 30584106
Proc Natl Acad Sci U S A. 2016 Jun 7;113(23):6460-5
pubmed: 27217571