Polycomb-mediated repression of paternal chromosomes maintains haploid dosage in diploid embryos of

Marchantia polymorpha Polycomb chromosomes embryogenesis epigenetics gene dosage gene expression genetics genomic imprinting genomics

Journal

eLife
ISSN: 2050-084X
Titre abrégé: Elife
Pays: England
ID NLM: 101579614

Informations de publication

Date de publication:
23 08 2022
Historique:
received: 05 04 2022
accepted: 18 07 2022
entrez: 23 8 2022
pubmed: 24 8 2022
medline: 25 8 2022
Statut: epublish

Résumé

Complex mechanisms regulate gene dosage throughout eukaryotic life cycles. Mechanisms controlling gene dosage have been extensively studied in animals, however it is unknown how generalizable these mechanisms are to diverse eukaryotes. Here, we use the haploid plant The reproductive cells of organisms that reproduce sexually – the egg and the sperm – each contain one copy of the organism’s genome. An embryo forms upon fertilization of an egg by a sperm cell. This embryo contains two copies of the genome, one from each parent. Under most circumstances, it does not matter which parent a gene copy came from: both gene copies are expressed. However, in some species genes coming from only one of the parents are switched on. This unusual mode of gene expression is called genomic imprinting. The best-known example of this occurs in female mammals, which repress the genes on the paternal X chromosome. Genomic imprinting also exists in flowering plants. Both mammals and flowering plants evolved tissues that channel nutrients from the mother to the embryo during development; the placenta and the endosperm, respectively. Genomic imprinting had, until now, only been described in these two types of organisms. It was unknown whether imprinting also happens in other organisms, and specifically those in which embryos develop inside the mother but without the help of a placenta or endosperm. Here Montgomery et al. addressed this question by studying the liverwort,

Autres résumés

Type: plain-language-summary (eng)
The reproductive cells of organisms that reproduce sexually – the egg and the sperm – each contain one copy of the organism’s genome. An embryo forms upon fertilization of an egg by a sperm cell. This embryo contains two copies of the genome, one from each parent. Under most circumstances, it does not matter which parent a gene copy came from: both gene copies are expressed. However, in some species genes coming from only one of the parents are switched on. This unusual mode of gene expression is called genomic imprinting. The best-known example of this occurs in female mammals, which repress the genes on the paternal X chromosome. Genomic imprinting also exists in flowering plants. Both mammals and flowering plants evolved tissues that channel nutrients from the mother to the embryo during development; the placenta and the endosperm, respectively. Genomic imprinting had, until now, only been described in these two types of organisms. It was unknown whether imprinting also happens in other organisms, and specifically those in which embryos develop inside the mother but without the help of a placenta or endosperm. Here Montgomery et al. addressed this question by studying the liverwort,

Identifiants

pubmed: 35996955
doi: 10.7554/eLife.79258
pii: 79258
pmc: PMC9402228
doi:
pii:

Banques de données

figshare
['10.6084/m9.figshare.19249622', '10.6084/m9.figshare.19249643', '10.6084/m9.figshare.19249592']

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2022, Montgomery et al.

Déclaration de conflit d'intérêts

SM, TH, NW, EA, SA, MS, CL, FB No competing interests declared

Références

Nat Protoc. 2014 Jan;9(1):171-81
pubmed: 24385147
Dev Genes Evol. 2005 Apr;215(4):207-12
pubmed: 15654625
Annu Rev Cell Dev Biol. 2011;27:585-610
pubmed: 21801013
Cell. 2013 Mar 14;152(6):1308-23
pubmed: 23498939
Plant Cell. 2020 May;32(5):1434-1448
pubmed: 32184347
Science. 2003 Apr 4;300(5616):131-5
pubmed: 12649488
Dev Genes Evol. 2016 Mar;226(2):79-85
pubmed: 26943808
Elife. 2022 Aug 23;11:
pubmed: 35996955
Curr Biol. 2019 Dec 2;29(23):4071-4077.e3
pubmed: 31735674
Heredity (Edinb). 2014 Aug;113(2):156-66
pubmed: 24619182
Nat Struct Mol Biol. 2013 May;20(5):566-73
pubmed: 23542155
Bioinformatics. 2009 Jul 15;25(14):1754-60
pubmed: 19451168
J Genomics. 2014 Jun 01;2:104-17
pubmed: 25057326
Elife. 2017 Jan 16;6:
pubmed: 28079019
Trends Genet. 2013 Dec;29(12):677-83
pubmed: 23953923
Plant Cell Physiol. 2016 Feb;57(2):281-90
pubmed: 25971256
Science. 2017 Sep 15;357(6356):1146-1149
pubmed: 28818970
PLoS Biol. 2012;10(4):e1001308
pubmed: 22529744
Philos Trans R Soc Lond B Biol Sci. 2006 Feb 28;361(1466):335-43
pubmed: 16612891
Mol Biol Evol. 2021 May 19;38(6):2566-2581
pubmed: 33706381
Plant Reprod. 2021 Dec;34(4):373-383
pubmed: 33914165
Elife. 2021 Sep 28;10:
pubmed: 34579806
Nature. 2017 Jul 27;547(7664):419-424
pubmed: 28723896
Int Rev Cell Mol Biol. 2010;282:91-134
pubmed: 20630467
Genome Res. 2010 Sep;20(9):1297-303
pubmed: 20644199
Mol Biol Evol. 2015 Feb;32(2):355-67
pubmed: 25371433
Genome Biol. 2014;15(12):550
pubmed: 25516281
New Phytol. 2010 Apr;186(1):54-62
pubmed: 19925558
Development. 2007 May;134(10):1823-31
pubmed: 17329371
PLoS Genet. 2020 Dec 17;16(12):e1008911
pubmed: 33332348
Nat Rev Mol Cell Biol. 2022 Apr;23(4):231-249
pubmed: 35013589
Mol Syst Biol. 2010 May 11;6:368
pubmed: 20461075
Curr Biol. 2020 Feb 24;30(4):573-588.e7
pubmed: 32004456
Nature. 2011 Jan 20;469(7330):343-9
pubmed: 21248841
Genome Biol Evol. 2017 Apr 1;9(4):968-980
pubmed: 28369297
Plant Reprod. 2019 Mar;32(1):63-75
pubmed: 30719569
Ann Bot. 2013 Mar;111(3):337-45
pubmed: 23277472
Philos Trans R Soc Lond B Biol Sci. 2013 Jan 5;368(1609):20120151
pubmed: 23166401
Nat Methods. 2012 Jun 28;9(7):676-82
pubmed: 22743772
Cell. 2017 Oct 5;171(2):287-304.e15
pubmed: 28985561
Curr Biol. 2021 Dec 20;31(24):5522-5532.e7
pubmed: 34735792
Annu Rev Genet. 2018 Nov 23;52:535-566
pubmed: 30256677
Genetics. 1960 Oct;45(10):1429-43
pubmed: 17248010
PLoS One. 2018 Oct 31;13(10):e0205117
pubmed: 30379827
Curr Biol. 2006 Apr 4;16(7):660-7
pubmed: 16581510
Elife. 2015 May 08;4:
pubmed: 25955966
F1000Res. 2015 Dec 30;4:1521
pubmed: 26925227
Chromosome Res. 2009;17(5):699-717
pubmed: 19802709
Am J Bot. 2011 Mar;98(3):352-69
pubmed: 21613131
Nat Plants. 2019 Jul;5(7):663-669
pubmed: 31285561
BMC Bioinformatics. 2011 Aug 04;12:323
pubmed: 21816040
Annu Rev Biochem. 2018 Jun 20;87:323-350
pubmed: 29668306
Cold Spring Harb Perspect Biol. 2015 May 01;7(5):
pubmed: 25934013
Annu Rev Genet. 2015;49:395-412
pubmed: 26631513
Exp Cell Res. 1978 Oct 15;116(2):269-73
pubmed: 710526
Genome Biol. 2021 Jan 4;22(1):12
pubmed: 33397407
F1000Res. 2016 Jun 23;5:1479
pubmed: 27429743
Mol Cell. 2010 May 28;38(4):576-89
pubmed: 20513432
Curr Biol. 2008 Sep 9;18(17):1344-8
pubmed: 18771921
Bioinformatics. 2013 Jan 1;29(1):15-21
pubmed: 23104886
J Biol Chem. 2019 Nov 1;294(44):16364-16373
pubmed: 31527083
Annu Rev Biochem. 2020 Jun 20;89:255-282
pubmed: 32259458
Dev Cell. 2017 Nov 6;43(3):349-358.e4
pubmed: 29112853
Nature. 1975 Aug 21;256(5519):640-2
pubmed: 1152998
Mol Ecol. 2021 Nov;30(22):5687-5703
pubmed: 33629415
Bioinformatics. 2009 Aug 15;25(16):2078-9
pubmed: 19505943
Plant Cell. 2017 Apr;29(4):608-617
pubmed: 28314828
Methods Mol Biol. 2020;2122:113-126
pubmed: 31975299
Genome Biol Evol. 2017 Sep 1;9(9):2461-2476
pubmed: 28961969
Bioinformatics. 2010 Mar 15;26(6):841-2
pubmed: 20110278
Curr Opin Genet Dev. 2015 Apr;31:50-6
pubmed: 25966908
Plant Reprod. 2019 Mar;32(1):39-43
pubmed: 30671645
Methods Mol Biol. 2020;2093:115-127
pubmed: 32088893
Nucleic Acids Res. 1980 Oct 10;8(19):4321-5
pubmed: 7433111
PLoS Biol. 2014 Jul 01;12(7):e1001899
pubmed: 24983465
Genome Res. 2017 Jul;27(7):1162-1173
pubmed: 28385710
Plant Cell Physiol. 2016 Feb;57(2):325-38
pubmed: 26858289
Cell. 2001 Dec 14;107(6):727-38
pubmed: 11747809
Sci Rep. 2018 Jul 17;8(1):10800
pubmed: 30018332

Auteurs

Sean Akira Montgomery (SA)

Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.
Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria.

Tetsuya Hisanaga (T)

Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.

Nan Wang (N)

Institute of Biology, University of Hohenheim, Stuttgart, Germany.

Elin Axelsson (E)

Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.

Svetlana Akimcheva (S)

Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.

Milos Sramek (M)

Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.

Chang Liu (C)

Institute of Biology, University of Hohenheim, Stuttgart, Germany.

Frédéric Berger (F)

Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH