Synthesis and Photophysics Characterization of Boronic Styril and Distyryl BODIPYs for Water-Based Dye-Sensitized Solar Cells.
BODIPY
boronic acids
donor-π-acceptor
dye-sensitized solar cells
external quantum yield
Journal
Biomimetics (Basel, Switzerland)
ISSN: 2313-7673
Titre abrégé: Biomimetics (Basel)
Pays: Switzerland
ID NLM: 101719189
Informations de publication
Date de publication:
11 Aug 2022
11 Aug 2022
Historique:
received:
26
06
2022
revised:
26
07
2022
accepted:
04
08
2022
entrez:
23
8
2022
pubmed:
24
8
2022
medline:
24
8
2022
Statut:
epublish
Résumé
In this study, two boronic acid BODIPYs are obtained through a microwave-assisted Knoevenagel reaction. The aim is to use them for the first time as dyes in a photosensitized solar cell (DSSC) to mimic chlorophyll photosynthesis, harvesting solar light and converting it into electricity. The microwave-assisted Knoevenagel reaction is a straightforward approach to extending the molecular conjugation of the dye and is applied for the first time to synthesize BODIPY's boronic acid derivatives. These derivatives have proved to be very useful for covalent deposition on titania. This work studies the photo-physical and electrochemical properties. Moreover, the photovoltaic performances of these two new dyes as sensitizers for DSSC are discussed. Experimental data show that both dyes exhibit photosensitizing activities in acetonitrile and water. In particular, in all the experiments, distyryl BODIPY was more efficient than styryl BODIPY. In this study, demonstrating the use of a natural component as a water-based electrolyte for boronic BODIPY sensitizers, we open new possibilities for the development of water-based solar cells.
Identifiants
pubmed: 35997430
pii: biomimetics7030110
doi: 10.3390/biomimetics7030110
pmc: PMC9397057
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
J Am Chem Soc. 2018 Jan 10;140(1):298-309
pubmed: 29155573
Chem Rev. 2010 Nov 10;110(11):6595-663
pubmed: 20831177
Inorg Chem. 2005 Oct 3;44(20):6841-51
pubmed: 16180840
Chem Soc Rev. 2021 Nov 15;50(22):12450-12550
pubmed: 34590638
J Am Chem Soc. 2015 May 27;137(20):6492-5
pubmed: 25945818
Inorg Chem. 2018 Aug 20;57(16):10137-10145
pubmed: 30074794
Org Lett. 2008 Aug 7;10(15):3299-302
pubmed: 18588306
Chem Sci. 2021 Mar 9;12(14):5002-5015
pubmed: 34168767
Nanomaterials (Basel). 2022 Jan 14;12(2):
pubmed: 35055282
J Phys Chem A. 2007 Jul 26;111(29):6832-42
pubmed: 17518452
Materials (Basel). 2021 Apr 23;14(9):
pubmed: 33922584
Chem Soc Rev. 2015 Jun 7;44(11):3431-73
pubmed: 25864577
J Phys Chem B. 2005 Aug 18;109(32):15368-75
pubmed: 16852949
J Phys Condens Matter. 2014 May 14;26(19):195302
pubmed: 24762339
Chem Soc Rev. 2019 Jul 1;48(13):3513-3536
pubmed: 31157810
Spectrochim Acta A Mol Biomol Spectrosc. 2018 Oct 5;203:315-323
pubmed: 29879647
J Chem Phys. 2021 Feb 28;154(8):084201
pubmed: 33639732
J Am Chem Soc. 2006 Aug 23;128(33):10640-1
pubmed: 16910633
Org Lett. 2011 Feb 4;13(3):438-41
pubmed: 21175151
Biomimetics (Basel). 2020 Oct 14;5(4):
pubmed: 33066431
Anal Chem. 2014 Sep 2;86(17):8763-9
pubmed: 25144824
Chemistry. 2021 Feb 1;27(7):2371-2380
pubmed: 32896940
ACS Appl Mater Interfaces. 2015 Feb 18;7(6):3427-55
pubmed: 25594514
Acc Chem Res. 2009 Nov 17;42(11):1788-98
pubmed: 19715294
J Org Chem. 2018 Nov 2;83(21):13228-13232
pubmed: 30280572
J Phys Chem B. 2006 Dec 21;110(50):25383-91
pubmed: 17165985
J Am Chem Soc. 2008 Jul 9;130(27):8570-1
pubmed: 18553967
Chem Soc Rev. 2013 Jan 7;42(1):77-88
pubmed: 23014776
Angew Chem Int Ed Engl. 2018 Mar 5;57(11):2841-2845
pubmed: 29365215
ACS Sustain Chem Eng. 2021 Jun 28;9(25):8550-8560
pubmed: 34239783
Chem Rev. 2016 Feb 10;116(3):1375-97
pubmed: 26367140
Chem Sci. 2019 Jan 22;10(10):3096-3102
pubmed: 30996892