Visual Pathway Involvement in NMDA Receptor Encephalitis: A Clinical, Optical Coherence Tomography, and 18-Fluorodeoxyglucose PET/CT Approach.
Humans
Retinal Ganglion Cells
Fluorodeoxyglucose F18
Positron Emission Tomography Computed Tomography
Tomography, Optical Coherence
/ methods
Anti-N-Methyl-D-Aspartate Receptor Encephalitis
/ diagnosis
Retrospective Studies
Visual Pathways
/ diagnostic imaging
Cross-Sectional Studies
Nerve Fibers
Visual Acuity
Journal
Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society
ISSN: 1536-5166
Titre abrégé: J Neuroophthalmol
Pays: United States
ID NLM: 9431308
Informations de publication
Date de publication:
01 06 2023
01 06 2023
Historique:
pmc-release:
01
06
2024
medline:
17
5
2023
pubmed:
25
8
2022
entrez:
24
8
2022
Statut:
ppublish
Résumé
Anti-NMDA receptor (NMDAR) encephalitis patients have been reported to exhibit visual dysfunction without retinal thinning. The objective of our study was to examine the involvement of the visual pathway structure and function in anti-NMDAR encephalitis by assessing postrecovery visual function and retinal structure, and acute-phase occipital cortex function. In this cross-sectional study, patients diagnosed with anti-NMDAR encephalitis per consensus criteria underwent postrecovery visual acuity (VA) testing and optical coherence tomography (OCT) with automated retinal layer segmentation. Clinical data and acute-phase brain 18F-fluorodeoxyglucose (FDG) PET/CT (performed within 90 days of symptom onset, assessed qualitatively and semi-quantitatively) were retrospectively analyzed. VA and OCT measures were compared between anti-NMDAR and age, sex, and race-matched healthy controls (HC). When available, FDG-PET/CT metabolism patterns were analyzed for correlations with VA, and OCT measures. A total of 16 anti-NMDAR (32 eyes) and 32 HC (64 eyes) were included in the study. Anti-NMDAR exhibited lower low-contrast VA (2.5% contrast: -4.4 letters [95% CI; -8.5 to -0.3]; P = 0.04, 1.25% contrast: -6.8 letters [95%CI; -12 to -1.7]; P = 0.01) compared with HC, but no differences were found on OCT-derived retinal layer thicknesses. Acute-phase FDG-PET/CT medial occipital cortex metabolism did not correlate with follow-up low-contrast VA or ganglion cell/inner plexiform layer thickness (GCIPL) (n = 7, 2.5% contrast: r = -0.31; P = 0.50, 1.25% contrast: r = -0.34; P = 0.45, GCIPL: r = -0.04; P = 0.94). Although the visual system seems to be involved in anti-NMDAR encephalitis, no retinal structural or occipital cortex functional abnormalities seem to be responsible for the visual dysfunction. When detected acutely, occipital lobe hypometabolism in anti-NMDAR encephalitis does not seem to associate with subsequent retrograde trans-synaptic degenerative phenomena, potentially reflecting reversible neuronal/synaptic dysfunction in the acute phase of the illness rather than neuronal degeneration.
Sections du résumé
BACKGROUND
Anti-NMDA receptor (NMDAR) encephalitis patients have been reported to exhibit visual dysfunction without retinal thinning. The objective of our study was to examine the involvement of the visual pathway structure and function in anti-NMDAR encephalitis by assessing postrecovery visual function and retinal structure, and acute-phase occipital cortex function.
METHODS
In this cross-sectional study, patients diagnosed with anti-NMDAR encephalitis per consensus criteria underwent postrecovery visual acuity (VA) testing and optical coherence tomography (OCT) with automated retinal layer segmentation. Clinical data and acute-phase brain 18F-fluorodeoxyglucose (FDG) PET/CT (performed within 90 days of symptom onset, assessed qualitatively and semi-quantitatively) were retrospectively analyzed. VA and OCT measures were compared between anti-NMDAR and age, sex, and race-matched healthy controls (HC). When available, FDG-PET/CT metabolism patterns were analyzed for correlations with VA, and OCT measures.
RESULTS
A total of 16 anti-NMDAR (32 eyes) and 32 HC (64 eyes) were included in the study. Anti-NMDAR exhibited lower low-contrast VA (2.5% contrast: -4.4 letters [95% CI; -8.5 to -0.3]; P = 0.04, 1.25% contrast: -6.8 letters [95%CI; -12 to -1.7]; P = 0.01) compared with HC, but no differences were found on OCT-derived retinal layer thicknesses. Acute-phase FDG-PET/CT medial occipital cortex metabolism did not correlate with follow-up low-contrast VA or ganglion cell/inner plexiform layer thickness (GCIPL) (n = 7, 2.5% contrast: r = -0.31; P = 0.50, 1.25% contrast: r = -0.34; P = 0.45, GCIPL: r = -0.04; P = 0.94).
CONCLUSIONS
Although the visual system seems to be involved in anti-NMDAR encephalitis, no retinal structural or occipital cortex functional abnormalities seem to be responsible for the visual dysfunction. When detected acutely, occipital lobe hypometabolism in anti-NMDAR encephalitis does not seem to associate with subsequent retrograde trans-synaptic degenerative phenomena, potentially reflecting reversible neuronal/synaptic dysfunction in the acute phase of the illness rather than neuronal degeneration.
Identifiants
pubmed: 36000788
doi: 10.1097/WNO.0000000000001696
pii: 00041327-202306000-00012
pmc: PMC9950287
mid: NIHMS1819154
doi:
Substances chimiques
Fluorodeoxyglucose F18
0Z5B2CJX4D
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
220-226Subventions
Organisme : NINDS NIH HHS
ID : R01 NS082347
Pays : United States
Informations de copyright
Copyright © 2022 by North American Neuro-Ophthalmology Society.
Références
Graus F, Titulaer MJ, Balu R, Benseler S, Bien CG, Cellucci T, Cortese I, Dale RC, Gelfand JM, Geschwind M, Glaser CA, Honnorat J, Höftberger R, Iizuka T, Irani SR, Lancaster E, Leypoldt F, Prüss H, Rae-Grant A, Reindl M, Rosenfeld MR, Rostásy K, Saiz A, Venkatesan A, Vincent A, Wandinger KP, Waters P, Dalmau J. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol. 2016;15:391–404.
Dalmau J, Graus F. Antibody-mediated encephalitis. N Engl J Med. 2018;378:840–851.
Brandt AU, Oberwahrenbrock T, Mikolajczak J, Zimmermann H, Prüss H, Paul F, Finke C. Visual dysfunction, but not retinal thinning, following anti-NMDA receptor encephalitis. Neurol Neuroimmunol Neuroinflamm. 2016;3:e198.
Probasco JC, Solnes L, Nalluri A, Cohen J, Jones KM, Zan E, Javadi MS, Venkatesan A. Decreased occipital lobe metabolism by FDG-PET/CT: an anti-NMDA receptor encephalitis biomarker. Neurol Neuroimmunol Neuroinflamm. 2017;5:e413.
Jindahra P, Petrie A, Plant GT. The time course of retrograde trans-synaptic degeneration following occipital lobe damage in humans. Brain. 2012;135:534–541.
Syc SB, Warner CV, Hiremath GS, Farrell SK, Ratchford JN, Conger A, Frohman T, Cutter G, Balcer LJ, Frohman EM, Calabresi PA. Reproducibility of high-resolution optical coherence tomography in multiple sclerosis. Mult Scler. 2010;16:829–839.
Tewarie P, Balk L, Costello F, Green A, Martin R, Schippling S, Petzold A. The OSCAR-IB consensus criteria for retinal OCT quality assessment. PLoS One. 2012;7:e34823.
Lang A, Carass A, Hauser M, Sotirchos ES, Calabresi PA, Ying HS, Prince JL. Retinal layer segmentation of macular OCT images using boundary classification. Biomed Opt Express. 2013;4:1133–1152.
Cobo-Calvo A, Izquierdo Gracia C, Quinones SM, Torro CM, Saiz A, Dalmau J, Martinez-Yelamos S. Optic neuritis in the setting of NMDA receptor encephalitis. J Neuroophthalmol. 2014;34:316–319.
Sawamura H, Yamamoto T, Ohtomo R, Bannai T, Wakakura M, Tsuji S. Anti-NMDA receptor encephalitis associated with transient cerebral dyschromatopsia, prosopagnosia, and lack of stereopsis. J Neuroophthalmol. 2014;34:144–148.
Yeshokumar AK, Gordon-Lipkin E, Arenivas A, Cohen J, Venkatesan A, Saylor D, Probasco JC. Neurobehavioral outcomes in autoimmune encephalitis. J Neuroimmunol. 2017;312:8–14.
Eliasof S, Jahr CE. Rapid AMPA receptor desensitization in catfish cone horizontal cells. Vis Neurosci. 1997;14:13–18.
Diamond JS, Copenhagen DR. The contribution of NMDA and non-NMDA receptors to the light-evoked input-output characteristics of retinal ganglion cells. Neuron. 1993;11:725–738.
Hensley SH, Yang XL, Wu SM. Identification of glutamate receptor subtypes mediating inputs to bipolar cells and ganglion cells in the tiger salamander retina. J Neurophysiol. 1993;69:2099–2107.
Yuan J, Guan H, Zhou X, Niu N, Li F, Cui L, Cui R. Changing brain metabolism patterns in patients with ANMDARE: serial 18F-FDG PET/CT findings. Clin Nucl Med. 2016;41:366–370.
Chen B, Wang Y, Geng Y, Huang Y, Guo S, Mao X. Marked improvement of anti-N-methyl-D-aspartate receptor encephalitis by large-dose methylprednisolone and plasmapheresis therapy combined with 18F-fluorodeoxyglucose positron emission tomography imaging: a case report. Exp Ther Med. 2014;8:1167–1169.
Dinkin M. Trans-synaptic retrograde degeneration in the human visual system: slow, silent, and real. Curr Neurol Neurosci Rep. 2017;17:16–22.
Dubey D, Pittock SJ, Kelly CR, McKeon A, Lopez-Chiriboga AS, Lennon VA, Gadoth A, Smith CY, Bryant SC, Klein CJ, Aksamit AJ, Toledano M, Boeve BF, Tillema JM, Flanagan EP. Autoimmune encephalitis epidemiology and a comparison to infectious encephalitis. Ann Neurol. 2018;83:166–177.