Threonine Cavities Are Targetable Motifs That Control Alpha-Synuclein Fibril Growth.
Parkinson’s disease
aggregation
alpha-synuclein
protein cavities
Journal
ACS chemical neuroscience
ISSN: 1948-7193
Titre abrégé: ACS Chem Neurosci
Pays: United States
ID NLM: 101525337
Informations de publication
Date de publication:
07 09 2022
07 09 2022
Historique:
pubmed:
25
8
2022
medline:
9
9
2022
entrez:
24
8
2022
Statut:
ppublish
Résumé
Recent high-resolution structures of alpha-synuclein (aSyn) fibrils offer promise for rational approaches to drug discovery for Parkinson's disease and Lewy body dementia. Harnessing the first such structures, we previously used molecular dynamics and free energy calculations to suggest that threonines 72 and 75─which line water-filled cavities within the fibril stacks─may be of central importance in stabilizing fibrils. Here, we used experimental mutagenesis of both wild-type and A53T aSyn to show that both threonine residues play important but surprisingly disparate roles in fibril nucleation and elongation. The T72A mutant, but not T75A, resulted in a large increase in the extent of fibrillization during primary nucleation, leading us to posit that T72 acts as a "brake" on run-away aggregation. An expanded set of simulations of five recent high-resolution fibril structures suggests that confinement of cavity waters around T72 correlates with this finding. In contrast, the T75A mutation led to a modest decrease in the extent of fibrillization. Furthermore, both T72A and T75A completely blocked the initial fibril elongation in seeded fibrillization. To test whether these threonine-lined cavities are druggable targets, we used computational docking to identify potential small-molecule binders. We show that the top-scoring hit, aprepitant, strongly promotes fibril growth while specifically interacting with aSyn fibrils and not monomer, and we offer speculation as to how such compounds could be used therapeutically.
Identifiants
pubmed: 36001084
doi: 10.1021/acschemneuro.2c00327
pmc: PMC9906799
mid: NIHMS1870668
doi:
Substances chimiques
SNCA protein, human
0
alpha-Synuclein
0
Threonine
2ZD004190S
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
2646-2657Subventions
Organisme : NINDS NIH HHS
ID : R01 NS084998
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS117968
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM131814
Pays : United States
Références
Trends Mol Med. 2020 Oct;26(10):936-952
pubmed: 32371172
J Exp Med. 2012 May 7;209(5):975-86
pubmed: 22508839
Prog Nucl Magn Reson Spectrosc. 2013 Aug;73:1-16
pubmed: 23962882
ACS Chem Neurosci. 2017 Sep 20;8(9):1859-1864
pubmed: 28677385
J Chem Phys. 2015 Jun 14;142(22):224907
pubmed: 26071731
Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):10328-33
pubmed: 27573854
Nat Commun. 2018 Sep 6;9(1):3609
pubmed: 30190461
Biochemistry. 2001 Sep 25;40(38):11604-13
pubmed: 11560511
Biochem J. 2019 Oct 15;476(19):2677-2703
pubmed: 31654060
J Am Chem Soc. 2022 Feb 16;144(6):2501-2510
pubmed: 35130691
J Cheminform. 2013 Aug 16;5(1):39
pubmed: 23953065
Anal Biochem. 2010 May 15;400(2):270-81
pubmed: 20149780
J Comput Chem. 2011 Jul 30;32(10):2319-27
pubmed: 21500218
Heliyon. 2021 Jan 11;7(1):e05874
pubmed: 33490665
Front Mol Neurosci. 2019 Dec 05;12:299
pubmed: 31866823
J Mol Graph. 1996 Feb;14(1):33-8, 27-8
pubmed: 8744570
Biochem Biophys Res Commun. 2015 Sep 04;464(4):988-993
pubmed: 26192120
Amyloid. 2017 Mar;24(1):1-16
pubmed: 28393556
Elife. 2019 Dec 09;8:
pubmed: 31815671
J Med Chem. 2004 Mar 25;47(7):1739-49
pubmed: 15027865
Nature. 1997 Aug 28;388(6645):839-40
pubmed: 9278044
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W348-51
pubmed: 22645321
Neurobiol Dis. 2015 Jul;79:150-63
pubmed: 25931201
J Chem Phys. 2020 Jul 28;153(4):044130
pubmed: 32752662
Commun Biol. 2019 Oct 11;2:374
pubmed: 31633065
J Comput Chem. 2008 Aug;29(11):1859-65
pubmed: 18351591
Parkinsonism Relat Disord. 2014 Jan;20 Suppl 1:S85-7
pubmed: 24262196
Nat Protoc. 2014 Sep;9(9):2135-46
pubmed: 25122523
Nat Struct Mol Biol. 2016 May;23(5):409-15
pubmed: 27018801
Biophys J. 2011 Nov 2;101(9):2260-6
pubmed: 22067166
Cell. 2021 Sep 16;184(19):4857-4873
pubmed: 34534463
Proc Natl Acad Sci U S A. 2019 Jan 29;116(5):1511-1519
pubmed: 30651314
Proc Natl Acad Sci U S A. 2020 Feb 18;117(7):3592-3602
pubmed: 32015135
Proc Natl Acad Sci U S A. 2018 Oct 9;115(41):10481-10486
pubmed: 30249646
Nat Struct Mol Biol. 2019 Nov;26(11):1044-1052
pubmed: 31695184
Nature. 2015 Sep 24;525(7570):486-90
pubmed: 26352473
Nat Chem. 2015 Nov;7(11):913-20
pubmed: 26492012
Nature. 2020 Sep;585(7825):464-469
pubmed: 32461689
Cell Res. 2020 Apr;30(4):360-362
pubmed: 32203130
Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1430-5
pubmed: 15671169
Proc Natl Acad Sci U S A. 2020 Aug 18;117(33):20305-20315
pubmed: 32737160
Cell Res. 2018 Sep;28(9):897-903
pubmed: 30065316
Brain Pathol. 2020 Jul;30(4):766-778
pubmed: 32232888
J Biomol NMR. 2001 May;20(1):71-5
pubmed: 11430757
J Mol Recognit. 2019 Dec;32(12):e2810
pubmed: 31456282
J Chem Phys. 2021 Oct 21;155(15):154502
pubmed: 34686053
Nat Methods. 2017 Jan;14(1):71-73
pubmed: 27819658