Machine learning method for extracting elastic modulus of cells.

Cell Elastic modulus Finite element simulation Machine learning Neural networks

Journal

Biomechanics and modeling in mechanobiology
ISSN: 1617-7940
Titre abrégé: Biomech Model Mechanobiol
Pays: Germany
ID NLM: 101135325

Informations de publication

Date de publication:
Oct 2022
Historique:
received: 03 01 2022
accepted: 01 07 2022
pubmed: 25 8 2022
medline: 4 11 2022
entrez: 24 8 2022
Statut: ppublish

Résumé

The Hertz contact mechanics model is commonly used to extract the elastic modulus of the cell, but the basic assumptions of the model are often not met in cell indentation experiments, which can lead to errors in the obtained elastic modulus of cell. The establishment of theoretical formulas or modification of the Hertz formulas has been proposed to reduce the errors introduced by indentation depth and cell thickness, but errors from cell radius and probe radius are largely neglected. Herein, we build a neural network model in machine learning to extract the elastic modulus of cell, which takes into account of four variables: indentation depth, cell thickness, cell radius, and probe radius. The validity of the model is demonstrated by the indentation experiment. The introduction of machine learning methods provides an alternative solution for extracting the elastic modulus of the cell and has potential for application.

Identifiants

pubmed: 36001275
doi: 10.1007/s10237-022-01609-x
pii: 10.1007/s10237-022-01609-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1603-1612

Subventions

Organisme : Key Technologies Research and Development Program
ID : 2018YFA0704103
Organisme : Key Technologies Research and Development Program
ID : 2018YFA0704104

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Butt HJ, Jaschke M (1995) Calculation of thermal noise in atomic force microscopy. Nanotechnology 6(1):1. https://doi.org/10.1088/0957-4484/6/1/001
doi: 10.1088/0957-4484/6/1/001
Chen J, Lu G (2012) Finite element modelling of nanoindentation based methods for mechanical properties of cells. J Biomech 45(16):2810–2816. https://doi.org/10.1016/j.jbiomech.2012.08.037
doi: 10.1016/j.jbiomech.2012.08.037
Cross SE, Jin YS, Rao J, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2(12):780–783. https://doi.org/10.1038/nnano.2007.388
doi: 10.1038/nnano.2007.388
Dimitriadis EK, Horkay F, Maresca J, Kachar B, Chadwick RC (2002) Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J 82(5):2798–2810. https://doi.org/10.1016/S0006-3495(02)75620-8
doi: 10.1016/S0006-3495(02)75620-8
Ding Y, Xu GK, Wang GF (2017) On the determination of elastic moduli of cells by AFM based indentation. Sci Rep-Uk 7(1):1–8. https://doi.org/10.1038/srep45575
doi: 10.1038/srep45575
Garcia PD, Ricardo G (2018) Determination of the elastic moduli of a single cell cultured on a rigid support by force microscopy. Biophys J 114(12):2923–2932. https://doi.org/10.1016/j.bpj.2018.05.012
doi: 10.1016/j.bpj.2018.05.012
Gavara N, Chadwick RS (2012) Determination of the elastic moduli of thin samples and adherent cells using conical atomic force microscope tips. Nat Nanotechnol 7(11):733–736. https://doi.org/10.1038/nnano.2012.163
doi: 10.1038/nnano.2012.163
Hertz H (1882) ber Die Berührung Fester Elastischer Krper. J Für Die Reine Angew Math (crelles Journal) 1882:156–171. https://doi.org/10.1515/crll.1882.92.156
doi: 10.1515/crll.1882.92.156
Hornik K, Stinchcombe M, White H (1991) Approximation capabilities of multilayer feedforward networks. Neural Netw 4(2):251–257. https://doi.org/10.1016/0893-6080(91)90009-T
doi: 10.1016/0893-6080(91)90009-T
Kingma D, Ba J (2014) Adam: a method for stochastic optimization. J Comput Sci. Preprint http://arxiv.org/abs/1412.6980
Kiyohara S, Oda H, Miyata T, Mizoguchi T (2016) Prediction of interface structures and energies via virtual screening. Sci Adv 2(11):e1600746. https://doi.org/10.1126/sciadv.1600746
doi: 10.1126/sciadv.1600746
Lekka M, Fornal M, Pyka-Fościak G, Lebed K, Wizner B, Grodzicki T, Styczen J (2005) Erythrocyte stiffness probed using atomic force microscope. Biorheology 42(4):307–317. https://doi.org/10.1002/bip.20128
doi: 10.1002/bip.20128
Li QS, Lee G, Ong CN, Lim CT (2008) AFM indentation study of breast cancer cells. Biochem Bioph Res Co 374(4):609–613. https://doi.org/10.1016/j.bbrc.2008.07.078
doi: 10.1016/j.bbrc.2008.07.078
Liu X, Athanasiou CE, Padture NP, Sheldon BW, Gao H (2020) A machine learning approach to fracture mechanics problems. Acta Mater 190:105–112. https://doi.org/10.1016/j.actamat.2020.03.016
doi: 10.1016/j.actamat.2020.03.016
Long R, Hall MS, Wu M, Hui CY (2011) Effects of gel thickness on microscopic indentation measurements of gel modulus. Biophys J 101(3):643–650. https://doi.org/10.1016/j.bpj.2011.06.049
doi: 10.1016/j.bpj.2011.06.049
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antig L, Desmaison A, Köpf A, Yang E, DeVito Z, DeVito M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) PyTorch: an imperative style, high-performance deep learning library. N I P S 32:8026–8037. Preprint http://arxiv.org/abs/1912.01703
Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back propagating errors. Nature 323(6088):533–536. https://doi.org/10.1038/323533a0
doi: 10.1038/323533a0
Roan E, Wilhelm K, Bada A, Makena PS, Gorantla VK, Sinclair SE, Waters CM (2012) Hyperoxia alters the mechanical properties of alveolar epithelial cells. Am J Physiol-Lung C 302(12):L1235–L1241. https://doi.org/10.1152/ajplung.00223.2011
doi: 10.1152/ajplung.00223.2011
Sen S, Subramanian S, Discher DE (2005) Indentation and adhesive probing of a cell membrane with AFM: theoretical model and experiments. Biophys J 89(5):3203–3213. https://doi.org/10.1529/biophysj.105.063826
doi: 10.1529/biophysj.105.063826
Sun W, Ma J, Wang C, Li H, Zhang W (2021a) Precise determination of elastic modulus of cell using conical AFM probe. J Biomech 118(60):110277. https://doi.org/10.1016/j.jbiomech.2021.110277
doi: 10.1016/j.jbiomech.2021.110277
Sun W, Yin P, Wang C, Ren Y, Han X, Wu C, Zhang W (2021b) Determination of the elastic modulus of adherent cells using spherical atomic force microscope probe. J Mater Sci 56(32):18210–18218. https://doi.org/10.1007/s10853-021-06445-5
doi: 10.1007/s10853-021-06445-5
Titushkin I, Cho M (2007) Modulation of cellular mechanics during osteogenic differentiation of human mesenchymal stem cells. Biophys J 93(10):3693–3702. https://doi.org/10.1529/biophysj.107.107797
doi: 10.1529/biophysj.107.107797
Titushkin I, Cho M (2009) Regulation of cell cytoskeleton and membrane mechanics by electric field: role of linker proteins. Biophys J 96(2):717–728. https://doi.org/10.1016/j.bpj.2008.09.035
doi: 10.1016/j.bpj.2008.09.035
Volle CB, Ferguson MA, Aidala KE, Spain EM, Núez ME (2008) Quantitative changes in the elasticity and adhesive properties of Escherichia coli ZK1056 prey cells during predation by Bdellovibrio bacteriovorus 109J. Langmuir 24(15):8102–8110. https://doi.org/10.1021/la8009354
doi: 10.1021/la8009354
Wang L, Tian L, Wang Y, Zhang W, Wang Z, Liu X (2020) Determination of viscohyperelastic properties of tubule epithelial cells by an approach combined with AFM nanoindentation and finite element analysis. Micron 129(2020):102779. https://doi.org/10.1016/j.micron.2019.102779
doi: 10.1016/j.micron.2019.102779
Wang Y, Riordon J, Kong T, Xu Y, Nguyen B, Zhong J, You JB, Lagunov A, Hannam TG, Jarvi K, Sinton D (2019) Prediction of DNA integrity from morphological parameters using a single-sperm DNA fragmentation index assay. Adv Sci 6(15):1900712. https://doi.org/10.1002/advs.201900712
doi: 10.1002/advs.201900712
Wildling L, Rankl C, Haselgrübler T, Gruber HJ, Holy M, Newman AH, Zou MF, Zhu R, Freissmuth M, Sitte HH, Hinterdorfer P (2012) Probing binding pocket of serotonin transporter by single molecular force spectroscopy on living cells. J Biol Chem 287(1):105–113. https://doi.org/10.1074/jbc.M111.304873
doi: 10.1074/jbc.M111.304873
Xu B, Wang N, Chen T, Li M (2015) Empirical evaluation of rectified activations in convolutional network. J Comput Ence. Preprint http://arxiv.org/abs/1505.00853
Xu XS, Zhong WX, Zhang HW (1997) The Saint-Venant problem and principle in elasticity. Int J Solids Struct 34(22):2815–2827. https://doi.org/10.1016/S0020-7683(96)00198-9
doi: 10.1016/S0020-7683(96)00198-9
Zhang CY, Zhang YW (2008) Computational analysis of adhesion force in the indentation of cells using atomic force microscopy. Phys Rev E 77(2):021912. https://doi.org/10.1103/PhysRevE.77.021912
doi: 10.1103/PhysRevE.77.021912

Auteurs

Guanlin Zhou (G)

State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116024, China.

Min Chen (M)

State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116024, China.

Chao Wang (C)

State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116024, China.

Xiao Han (X)

State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116024, China.

Chengwei Wu (C)

State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116024, China.

Wei Zhang (W)

State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116024, China. wei.zhang@dlut.edu.cn.

Articles similaires

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software

Understanding the role of machine learning in predicting progression of osteoarthritis.

Simone Castagno, Benjamin Gompels, Estelle Strangmark et al.
1.00
Humans Disease Progression Machine Learning Osteoarthritis
Silicon Dioxide Water Hot Temperature Compressive Strength X-Ray Diffraction
Humans Artificial Intelligence Neoplasms Prognosis Image Processing, Computer-Assisted

Classifications MeSH