Efficient generation of entangled multiphoton graph states from a single atom.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
08 2022
08 2022
Historique:
received:
26
01
2022
accepted:
16
06
2022
entrez:
24
8
2022
pubmed:
25
8
2022
medline:
27
8
2022
Statut:
ppublish
Résumé
The central technological appeal of quantum science resides in exploiting quantum effects, such as entanglement, for a variety of applications, including computing, communication and sensing
Identifiants
pubmed: 36002484
doi: 10.1038/s41586-022-04987-5
pii: 10.1038/s41586-022-04987-5
pmc: PMC9402438
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
677-681Informations de copyright
© 2022. The Author(s).
Références
Bennett, C. H. & DiVincenzo, D. P. Quantum information and computation. Nature 404, 247–255 (2000).
doi: 10.1038/35005001
Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).
doi: 10.22331/q-2018-08-06-79
Zhong, H.-S. et al. 12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion. Phys. Rev. Lett. 121, 250505 (2018).
doi: 10.1103/PhysRevLett.121.250505
Schön, C. et al. Sequential generation of entangled multiqubit states. Phys. Rev. Lett. 95, 110503 (2005).
doi: 10.1103/PhysRevLett.95.110503
Wilk, T., Quantum Interface Between an Atom and a Photon. Dissertation, Technische Universität München. http://mediatum.ub.tum.de/node?id=637078 (2008).
Lindner, N. H. & Rudolph, T. Proposal for pulsed on-demand sources of photonic cluster state strings. Phys. Rev. Lett. 103, 113602 (2009).
doi: 10.1103/PhysRevLett.103.113602
Reiserer, A. & Rempe, G. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379 (2015).
doi: 10.1103/RevModPhys.87.1379
Greenberger, D. M., Horne, M. A. & Zeilinger, A. in Bell’s Theorem, Quantum Theory and Conceptions of the Universe (ed. Kafatos, M.) 69–72 (Springer, 1989).
Hein, M. et al. in Quantum Computers, Algorithms and Chaos https://ebooks.iospress.nl/publication/27431 115–218 (IOS Press, 2006).
Yao, X.-C. et al. Experimental demonstration of topological error correction. Nature 482, 489–494 (2012).
doi: 10.1038/nature10770
Schwartz, I. et al. Deterministic generation of a cluster state of entangled photons. Science 354, 434–437 (2016).
doi: 10.1126/science.aah4758
Istrati, D. et al. Sequential generation of linear cluster states from a single photon emitter. Nat Commun 11, 5501 (2020).
doi: 10.1038/s41467-020-19341-4
Yang, C.-W. et al. Sequential generation of multiphoton entanglement with a Rydberg superatom. Preprint at https://arxiv.org/abs/2112.09447 (2021).
Welte, S. et al. Photon-mediated quantum gate between two neutral atoms in an optical cavity. Phys. Rev. X 8, 011018 (2018).
Langenfeld, S., Thomas, P., Morin, O. & Rempe, G. Quantum repeater node demonstrating unconditionally secure key distribution. Phys. Rev. Lett. 126, 230506 (2021).
doi: 10.1103/PhysRevLett.126.230506
Daiss, S. et al. A quantum-logic gate between distant quantum-network modules. Science 371, 614–617 (2021).
doi: 10.1126/science.abe3150
Russo, A., Barnes, E. & Economou, S. Generation of arbitrary all-photonic graph states from quantum emitters. New J. Phys. 21, 055002 (2019).
doi: 10.1088/1367-2630/ab193d
Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001).
doi: 10.1103/PhysRevLett.86.5188
Briegel, H. J., Browne, D. E., Dür, W., Raussendorf, R. & Van den Nest, M. Measurement-based quantum computation. Nat. Phys 5, 19–26 (2009).
doi: 10.1038/nphys1157
Zwerger, M., Dür, W. & Briegel, H. J. Measurement-based quantum repeaters. Phys. Rev. A 85, 062326 (2012).
doi: 10.1103/PhysRevA.85.062326
Borregaard, J. et al. One-way quantum repeater based on near-deterministic photon-emitter interfaces. Phys. Rev. X 10, 021071 (2020).
Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404, 256–259 (2000).
doi: 10.1038/35005011
Omran, A. et al. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science 365, 570–574 (2019).
doi: 10.1126/science.aax9743
Gong, M. et al. Genuine 12-qubit entanglement on a superconducting quantum processor. Phys. Rev. Lett. 122, 110501 (2019).
doi: 10.1103/PhysRevLett.122.110501
Besse, J.-C. et al. Realizing a deterministic source of multipartite-entangled photonic qubits. Nat. Commun. 11, 4877 (2020).
doi: 10.1038/s41467-020-18635-x
Pogorelov, I. et al. Compact ion-trap quantum computing demonstrator. PRX Quantum 2, 020343 (2021).
doi: 10.1103/PRXQuantum.2.020343
Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169–176 (2005).
doi: 10.1038/nature03347
Lanyon, B. P. et al. Measurement-based quantum computation with trapped ions. Phys. Rev. Lett. 111, 210501 (2013).
doi: 10.1103/PhysRevLett.111.210501
Stolz, T. et al. A quantum-logic gate between two optical photons with an efficiency above 40%. Phys. Rev. X 12, 021035 (2022).
Morin, O., Körber, M., Langenfeld, S. & Rempe, G. Deterministic shaping and reshaping of single-photon temporal wave functions. Phys. Rev. Lett. 123, 133602 (2019).
doi: 10.1103/PhysRevLett.123.133602
Schupp, J. et al. Interface between trapped-ion qubits and traveling photons with close-to-optimal efficiency. PRX Quantum 2, 020331 (2021).
doi: 10.1103/PRXQuantum.2.020331
Tomm, N. et al. A bright and fast source of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).
doi: 10.1038/s41565-020-00831-x
Knall, E. et al. Efficient source of shaped single photons based on an integrated diamond nanophotonic system. Preprint at https://doi.org/10.48550/arXiv.2201.02731 (2022).
Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).
doi: 10.1038/nnano.2017.218
Gühne, O., Lu, C.-Y., Gao, W.-B. & Pan, J.-W. Toolbox for entanglement detection and fidelity estimation. Phys. Rev. A 76, 030305 (2007).
doi: 10.1103/PhysRevA.76.030305
Tóth, G. & Gühne, O. Detecting genuine multipartite entanglement with two local measurements. Phys. Rev. Lett. 94, 060501 (2005).
doi: 10.1103/PhysRevLett.94.060501
Tiurev, K. & Sørensen, A. S., Fidelity measurement of a multiqubit cluster state with minimal effort. Preprint at https://arXiv.org/abs/2107.10386 (2021).
Barrett, S. D. & Stace, T. M. Fault tolerant quantum computation with very high threshold for loss errors. Phys. Rev. Lett. 105, 200502 (2010).
doi: 10.1103/PhysRevLett.105.200502
Raussendorf, R. & Harrington, J. Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett. 98, 190504 (2007).
doi: 10.1103/PhysRevLett.98.190504
Varnava, M., Browne, D. E. & Rudolph, T. How good must single photon sources and detectors be for efficient linear optical quantum computation? Phys. Rev. Lett. 100, 060502 (2008).
doi: 10.1103/PhysRevLett.100.060502