Postcranial evidence of late Miocene hominin bipedalism in Chad.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
09 2022
09 2022
Historique:
received:
31
08
2020
accepted:
24
05
2022
pubmed:
25
8
2022
medline:
9
9
2022
entrez:
24
8
2022
Statut:
ppublish
Résumé
Bipedal locomotion is one of the key adaptations that define the hominin clade. Evidence of bipedalism is known from postcranial remains of late Miocene hominins as early as 6 million years ago (Ma) in eastern Africa
Identifiants
pubmed: 36002567
doi: 10.1038/s41586-022-04901-z
pii: 10.1038/s41586-022-04901-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
94-100Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Senut, B. et al. First hominid from the Miocene (Lukeino formation, Kenya). C. R. Acad. Sci. Paris IIA 332, 137–144 (2001).
Pickford, M., Senut, B., Gommery, D. & Treil, J. Bipedalism in Orrorin tugenensis revealed by its femora. C. R. Palevol. 1, 191–203 (2002).
doi: 10.1016/S1631-0683(02)00028-3
Almécija, S. et al. The femur of Orrorin tugenensis exhibits morphometric affinities with both Miocene apes and later hominins. Nat. Commun. 4, 2888 (2013).
pubmed: 24301078
doi: 10.1038/ncomms3888
Richmond, B. G. & Jungers, W. L. Orrorin tugenensis femoral morphology and the evolution of hominin bipedalism. Science 319, 1662–1665 (2008).
pubmed: 18356526
doi: 10.1126/science.1154197
Brunet, M. et al. A new hominid from the Upper Miocene of Chad, Central Africa. Nature 418, 145–151 (2002).
pubmed: 12110880
doi: 10.1038/nature00879
Zollikofer, C. P. et al. Virtual cranial reconstruction of Sahelanthropus tchadensis. Nature 434, 755–759 (2005).
pubmed: 15815628
doi: 10.1038/nature03397
Lebatard, A. E. et al. Cosmogenic nuclide dating of Sahelanthropus tchadensis and Australopithecus bahrelghazali: Mio-Pliocene hominids from Chad. Proc. Natl Acad. Sci. USA 105, 3226–3231 (2008).
pubmed: 18305174
pmcid: 2265126
doi: 10.1073/pnas.0708015105
Brunet, M. et al. New material of the earliest hominid from the Upper Miocene of Chad. Nature 434, 752–755 (2005).
pubmed: 15815627
doi: 10.1038/nature03392
Vignaud, P. et al. Geology and palaeontology of the Upper Miocene Toros-Menalla hominid locality, Chad. Nature 418, 152–155 (2002).
pubmed: 12110881
doi: 10.1038/nature00880
Heaton, J. L. et al. The long limb bones of the StW 573 Australopithecus skeleton from Sterkfontein Member 2: descriptions and proportions. J. Hum. Evol. 133, 167–197 (2019).
pubmed: 31358179
doi: 10.1016/j.jhevol.2019.05.015
Ruff, C. B. Biomechanics of the hip and birth in early Homo. Am. J. Phys. Anthrop. 98, 527–574 (1995).
pubmed: 8599386
doi: 10.1002/ajpa.1330980412
Böhme, M. et al. A new Miocene ape and locomotion in the ancestor of great apes and humans. Nature 575, 489–493 (2019).
pubmed: 31695194
doi: 10.1038/s41586-019-1731-0
Williams, S. A. et al. Reevaluating bipedalism in Danuvius. Nature 586, E1–E3 (2020).
doi: 10.1038/s41586-020-2736-4
Pina, M. Unravelling the Positional Behaviour of Fossil Hominoids Morphofunctional and Structural Analysis of the Primate Hindlimb. PhD thesis, Universitat Autònoma de Barcelona (2016).
Lovejoy, C. O., Suwa, G., Spurlock, L., Asfaw, B. & White, T. D. The pelvis and femur of Ardipithecus ramidus: the emergence of upright walking. Science 326, 71e1–71e6 (2009).
pubmed: 19810197
doi: 10.1126/science.1175831
Prost, J. H. A definitional system for the classification of primate locomotion. Am. Anthropol. 67, 1198–1214 (1965).
doi: 10.1525/aa.1965.67.5.02a00060
Puymerail, L. The functionally-related signatures characterizing the endostructural organisation of the femoral shaft in modern humans and chimpanzee. C. R. Palevol. 12, 223–231 (2013).
doi: 10.1016/j.crpv.2013.04.001
Galik, K. et al. External and internal morphology of the BAR 1002′00 Orrorin tugenensis femur. Science 305, 1450–1453 (2004).
pubmed: 15353798
doi: 10.1126/science.1098807
Ohman, J. C., Lovejoy, C. O. & White, T. D. Questions about Orrorin femur. Science 307, 845 (2005).
pubmed: 15709231
doi: 10.1126/science.307.5711.845b
Puymerail, L. Caractérisation de l'endostructure et des propriétés biomécaniques de la diaphyse fémorale: la signature de la bipédie et la reconstruction des paléo-répertoires posturaux et locomoteurs des hominines (Paris, Muséum National d'Histoire Naturelle, 2011).
Wallace, I. J. et al. Functional significance of genetic variation underlying limb bone diaphyseal structure. Am. J. Phys. Anthropol. 143, 21–30 (2010).
pubmed: 20310061
pmcid: 2927726
doi: 10.1002/ajpa.21286
Lieberman, D. E., Polk, J. D. & Demes, B. Predicting long bone loading from cross‐sectional geometry. Am. J. Phys. Anthropol. 123, 156–171 (2004).
pubmed: 14730649
doi: 10.1002/ajpa.10316
Grabowski, M., Hatala, K. G., Jungers, W. L. & Richmond, B. G. Body mass estimates of hominin fossils and the evolution of human body size. J. Hum. Evol. 85, 75–93 (2015).
pubmed: 26094042
doi: 10.1016/j.jhevol.2015.05.005
Ruff, C. B., Burgess, M. L., Squyres, N., Junno, J. A. & Trinkaus, E. Lower limb articular scaling and body mass estimation in Pliocene and Pleistocene hominins. J. Hum. Evol. 115, 85–111 (2018).
pubmed: 29331230
doi: 10.1016/j.jhevol.2017.10.014
Nadell, J. Ontogeny and Adaptation: A Cross-Sectional Study of Primate Limb Elements. PhD thesis, Durham University (2017).
Nakatsukasa, M., Pickford, M., Egi, N. & Senut, B. Femur length, body mass, and stature estimates of Orrorin tugenensis, a 6 Ma hominid from Kenya. Primates 48, 171–178 (2007).
pubmed: 17318735
doi: 10.1007/s10329-007-0040-7
Lovejoy, C. O. et al. The great divides: Ardipithecus ramidus reveals the postcrania of our last common ancestors with African apes. Science 326, 73–106 (2009).
doi: 10.1126/science.1175833
Jungers, W. L., Grabowski, M., Hatala, K. G. & Richmond, B. G. The evolution of body size and shape in the human career. Phil. Trans. R. Soc. B 371, 20150247 (2016).
pubmed: 27298459
pmcid: 4920302
doi: 10.1098/rstb.2015.0247
Kuperavage, A., Pokrajac, D., Chavanaves, S. & Eckhardt, R. B. Earliest known hominin calcar femorale in Orrorin tugenensis provides further internal anatomical evidence for origin of human bipedal locomotion. Anat. Rec. 301, 1834–1839 (2018).
doi: 10.1002/ar.23939
Clark, J. D. et al. Palaeoanthropological discoveries in the middle Awash Valley, Ethiopia. Nature 307, 423–428 (1984).
doi: 10.1038/307423a0
Hammer, A. The calcar femorale: a new perspective. J. Orthop. Surg. 27, 2309499019848778 (2019).
doi: 10.1177/2309499019848778
Zhang, Q. et al. The role of the calcar femorale in stress distribution in the proximal femur. Orthop. Surg. 1, 311–316 (2009).
pubmed: 22009881
pmcid: 6583181
doi: 10.1111/j.1757-7861.2009.00053.x
Haile-Selassie, Y., Suwa, G. & White, T. Hominidae. in Ardipithecus kadabba: Late Miocene Evidence From The Middle Awash, Ethiopia (eds Haile-Selassie, Y. & WoldeGabriel, G.) 159–236 (Univ. California Press, 2009).
Araiza, I., Meyer, M. R. & Williams, S. A. Is ulna curvature in the StW 573 (‘Little Foot’) Australopithecus natural or pathological? J. Hum. Evol. 151, 102927 (2021).
pubmed: 33370642
doi: 10.1016/j.jhevol.2020.102927
Drapeau, M. S. M., Ward, C. V., Kimbel, W. H., Johanson, D. C. & Rak, Y. Associated cranial and forelimb remains attributed to Australopithecus afarensis from Hadar, Ethiopia. J. Hum. Evol. 48, 593–642 (2005).
pubmed: 15927662
doi: 10.1016/j.jhevol.2005.02.005
Henderson, K., Pantinople, J., McCabe, K., Richards, H. L. & Milne, N. Forelimb bone curvature in terrestrial and arboreal mammals. PeerJ 5, e3229 (2017).
pubmed: 28462036
pmcid: 5408721
doi: 10.7717/peerj.3229
Drapeau, M. S. M. Functional anatomy of the olecranon process in hominoids and Plio-Pleistocene hominins. Am. J. Phys. Anthropol. 124, 297–314 (2004).
pubmed: 15252859
doi: 10.1002/ajpa.10359
Milne, N. & Granatosky, M. C. Ulna curvature in arboreal and terrestrial primates. J. Mammal. Evol. 28, 897–909 (2021).
doi: 10.1007/s10914-021-09566-5
Carlson, K. J. et al. Role of nonbehavioral factors in adjusting long bone diaphyseal structure in free-ranging Pan troglodytes. Int. J. Primatol. 29, 1401–1420 (2008).
pubmed: 19816545
pmcid: 2758400
doi: 10.1007/s10764-008-9297-y
Schmitt, D. Mediolateral reaction forces and forelimb anatomy in quadrupedal primates: implications for interpreting locomotor behavior in fossil primates. J. Hum. Evol. 44, 47–58 (2003).
pubmed: 12604303
doi: 10.1016/S0047-2484(02)00165-3
Cartmill, M. & Milton, K. The iorisiform wrist joint and the evolution of “brachiating” adaptations in the Hominoidea. Am. J. Phys. Anthrop. 47, 249–272 (1977).
pubmed: 410307
doi: 10.1002/ajpa.1330470206
Hunt, K. D. et al. Standardized descriptions of primate locomotor and postural modes. Primates 37, 363–387 (1996).
doi: 10.1007/BF02381373
Sarmiento, E. E. Anatomy of the hominoid wrist joint: its evolutionary and functional implications. Int. J. Primatol. 9, 281–345 (1988).
doi: 10.1007/BF02737381
Begun, D. R. Phyletic diversity and locomotion in primitive European hominids. Am. J. Phys. Anthropol. 87, 311–340 (1992).
pubmed: 1562059
doi: 10.1002/ajpa.1330870307
Lovejoy, C. O., Simpson, S. W., White, T. D., Asfaw, B. & Suwa, G. Careful climbing in the Miocene: the forelimbs of Ardipithecus ramidus and humans are primitive. Science 326, 70e1–70e8 (2009).
pubmed: 19810196
doi: 10.1126/science.1175827
Drapeau, M. S. M. Articular morphology of the proximal ulna in extant and fossil hominoids and hominins. J. Hum. Evol. 55, 86–102 (2008).
pubmed: 18472143
doi: 10.1016/j.jhevol.2008.01.005
Alba, D. M., Almécija, S., Casanovas-Vilar, I., Méndez, J. M. & Moyà-Solà, S. A partial skeleton of the fossil great ape Hispanopithecus laietanus from Can Feu and the mosaic evolution of crown-hominoid positional behaviors. PLoS ONE 7, e39617 (2012).
pubmed: 22761844
pmcid: 3382465
doi: 10.1371/journal.pone.0039617
Tuttle, R. H. Knuckle‐walking and the evolution of hominoid hands. Am. J. Phys. Anthrop. 26, 171–206 (1967).
doi: 10.1002/ajpa.1330260207
Crompton, R. H., Vereecke, E. E. & Thorpe, S. K. Locomotion and posture from the common hominoid ancestor to fully modern hominins, with special reference to the last common panin/hominin ancestor. J. Anat. 212, 501–543 (2008).
pubmed: 18380868
pmcid: 2409101
doi: 10.1111/j.1469-7580.2008.00870.x
Stern, J. T. & Susman, R. L. in Origine(s) de la Bipédie chez les Hominidés (eds Coppens, Y. & Senut, B.) 99–111 (CNRS, 1991).
Kozma, E. E. et al. Hip extensor mechanics and the evolution of walking and climbing capabilities in humans, apes, and fossil hominins. Proc. Natl Acad. Sci. USA 115, 4134–4139 (2018).
pubmed: 29610309
pmcid: 5910817
doi: 10.1073/pnas.1715120115
Macchiarelli, R., Bergeret-Medina, A., Marchi, D. & Wood, B. Nature and relationships of Sahelanthropus tchadensis. J. Hum. Evol. 149, 102898 (2020).
pubmed: 33142154
doi: 10.1016/j.jhevol.2020.102898
Gommery, D. & Senut, B. The terminal thumb phalanx of Orrorin tugenensis (Upper Miocene of Kenya). Geobios 39, 372–384 (2006).
doi: 10.1016/j.geobios.2005.03.002
Kirscher, U. et al. Age constraints for the Trachilos footprints from Crete. Sci. Rep. 11, 19427 (2021).
pubmed: 34635686
pmcid: 8505496
doi: 10.1038/s41598-021-98618-0
Meldrum, J. & Sarmiento, E. Comments on possible Miocene hominin footprints. Proc. Geol. Assoc. 129, 577–580 (2018).
doi: 10.1016/j.pgeola.2018.05.006
Guy, F. et al. Morphological affinities of the Sahelanthropus tchadensis (late Miocene hominid from Chad) cranium. Proc. Natl Acad. Sci. USA 102, 18836–18841 (2005).
pubmed: 16380424
pmcid: 1323204
doi: 10.1073/pnas.0509564102
Neaux, D. et al. Relationship between foramen magnum position and locomotion in extant and extinct hominoids. J. Jum. Evol. 113, 1–9 (2017).
Pilbeam, D. R. & Lieberman, D. E. in Chimpanzees and Human Evolution (eds Muller, M. N., Wrangham, R. W. & Pilbeam, D. R.) 22–141 (Belknap Harvard, 2017).
Senut, B., Pickford, M., Gommery, D. & Ségalen, L. Palaeoenvironments and the origin of hominid bipedalism. Hist. Biol. 30, 284–296 (2018).
doi: 10.1080/08912963.2017.1286337
WoldeGabriel, G. et al. Geology and palaeontology of the late Miocene Middle Awash valley, Afar rift, Ethiopia. Nature 412, 175–178 (2001).
pubmed: 11449271
doi: 10.1038/35084058
White, T. D. et al. Macrovertebrate paleontology and the Pliocene habitat of Ardipithecus ramidus. Science 326, 67–93 (2009).
doi: 10.1126/science.1175822
Barboni, D., Ashley, G. M., Bourel, B., Arraiz, H. & Mazur, J. C. Springs, palm groves, and the record of early hominins in Africa. Rev. Palaeobot. Palynol. 266, 23–41 (2019).
doi: 10.1016/j.revpalbo.2019.03.004
Novello, A. et al. Phytoliths indicate significant arboreal cover at Sahelanthropus type locality TM266 in northern Chad and a decrease in later sites. J. Hum. Evol. 106, 66–83 (2017).
pubmed: 28434541
doi: 10.1016/j.jhevol.2017.01.009
Steiper, M. E. & Seiffert, E. R. Evidence for a convergent slowdown in primate molecular rates and its implications for the timing of early primate evolution. Proc. Natl Acad. Sci. USA 109, 6006–6011 (2012).
pubmed: 22474376
pmcid: 3341044
doi: 10.1073/pnas.1119506109
Püschel, H. P., Bertrand, O. C., O’reilly, J. E., Bobe, R. & Püschel, T. A. Divergence-time estimates for hominins provide insight into encephalization and body mass trends in human evolution. Nat. Ecol. Evol. 5, 808–819 (2021).
pubmed: 33795855
doi: 10.1038/s41559-021-01431-1
Besenbacher, S., Hvilsom, C., Marques-Bonet, T., Mailund, T. & Schierup, M. H. Direct estimation of mutations in great apes reconciles phylogenetic dating. Nat. Ecol. Evol. 3, 286–292 (2019).
pubmed: 30664699
doi: 10.1038/s41559-018-0778-x
McBrearty, S. & Jablonski, N. G. First fossil chimpanzee. Nature 437, 105–108 (2005).
pubmed: 16136135
doi: 10.1038/nature04008
DeSilva, J., Shoreman, E. & MacLatchy, L. A fossil hominoid proximal femur from Kikorongo Crater, southwestern Uganda. J. Hum. Evol. 50, 687–695 (2006).
pubmed: 16620913
doi: 10.1016/j.jhevol.2006.01.008
Ishida, H. & Pickford, M. A new late Miocene hominoid from Kenya: Samburupithecus kiptalami gen. et sp. nov. C. R. Acad. Sci. Paris 325, 823–829 (1997).
Kunimatsu, Y. et al. A new late Miocene great ape from Kenya and its implications for the origins of African great apes and humans. Proc. Natl Acad. Sci. USA 104, 19220–19225 (2007).
pubmed: 18024593
pmcid: 2148271
doi: 10.1073/pnas.0706190104
Suwa, G., Kono, R. T., Katoh, S., Asfaw, B. & Beyene, Y. A new species of great ape from the late Miocene epoch in Ethiopia. Nature 448, 921–924 (2007).
pubmed: 17713533
doi: 10.1038/nature06113
Katoh, S. et al. New geological and palaeontological age constraint for the gorilla–human lineage split. Nature 530, 215–218 (2016).
pubmed: 26863981
doi: 10.1038/nature16510
Begun, D. R. in Handbook of Paleoanthropology (eds Henke, W. & Tattersall, I.) 1261–1332 (Springer-Verlag, 2015).
Mongle, C. S., Strait, D. S. & Grine, F. E. Expanded character sampling underscores phylogenetic stability of Ardipithecus ramidus as a basal hominin. J. Hum. Evol. 131, 28–39 (2019).
pubmed: 31182205
doi: 10.1016/j.jhevol.2019.03.006
Wood, B. & Harrison, T. The evolutionary context of the first hominins. Nature 470, 347–352 (2011).
pubmed: 21331035
doi: 10.1038/nature09709
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772
doi: 10.1038/nmeth.2019
Mongle, C. S., Wallace, I. J. & Grine, F. E. Cross-sectional structural variation relative to midshaft along hominine diaphyses. II. The hind limb. Am. J. Phys. Anthropol. 158, 398–407 (2015).
pubmed: 26174045
doi: 10.1002/ajpa.22802
Puymerail, L. et al. Structural analysis of the Kresna 11 Homo erectus femoral shaft (Sangiran, Java). J. Hum. Evol. 63, 741–749 (2012).
pubmed: 23036460
doi: 10.1016/j.jhevol.2012.08.003
Ruff, C. B., McHenry, H. M. & Thackeray, J. F. Cross‐sectional morphology of the SK 82 and 97 proximal femora. Am. J. Phys. Anthrop. 109, 509–521 (1999).
pubmed: 10423266
doi: 10.1002/(SICI)1096-8644(199908)109:4<509::AID-AJPA7>3.0.CO;2-X
Ruff, C. B. Long bone articular and diaphyseal structure in Old World monkeys and apes. I: locomotor effects. Am. J. Phys. Anthrop. 119, 305–342 (2002).
pubmed: 12448016
doi: 10.1002/ajpa.10117
Sládek, J. et al. Effect of deriving periosteal and endosteal contours from microCT scans on computation of cross-sectional properties in non-adults: the femur. J. Anat. 233, 381–393 (2018).
pmcid: 6081503
doi: 10.1111/joa.12835
Ruff, C. E., Higgins, R. W., Carlson, K. J. in Hominin Postcranial Remains from Sterkfontein, South Africa, 1936–1995 (eds Zipfel, B., Richmond B. G. & Ward, C.) 307–320 (Oxford Univ. Press, 2020).
Rohlf, F. J. tpsDig, digitize landmarks and outlines v.2.05 (Department of Ecology and Evolution, State University of New York at Stony Brook, 2005).
Senut, B. Bipédie et climat. C. R. Palevol. 5, 89–98 (2006).
doi: 10.1016/j.crpv.2005.11.003
Adams D., Collyer M., Kaliontzopoulou A. & Baken E. geomorph: Geometric Morphometric Analyses of 2D/3D Landmark Data. R package version 4.0. https://cran.r-project.org/package=geomorph (2021).
Baken, E. K., Collyer, M. L., Kaliontzopoulou, A. & Adams, D. C. Geomorph v4.0 and gmShiny: enhanced analytics and a new graphical interface for a comprehensive morphometric experience. Meth. Ecol. Evol. 12, 2355–2363 (2021).
doi: 10.1111/2041-210X.13723
The Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).
Bookstein, F. L. Pathologies of between-groups principal components analysis in geometric morphometrics. Evol. Biol. 46, 271–302 (2019).
doi: 10.1007/s11692-019-09484-8
Cardini, A., O’Higgins, P. & Rohlf, F. J. Seeing distinct groups where there are none: spurious patterns from between-group PCA. Evol. Biol. 46, 303–316 (2019).
doi: 10.1007/s11692-019-09487-5