The remaining obstacles for a totally implantable cochlear implant.
Journal
Current opinion in otolaryngology & head and neck surgery
ISSN: 1531-6998
Titre abrégé: Curr Opin Otolaryngol Head Neck Surg
Pays: United States
ID NLM: 9417024
Informations de publication
Date de publication:
01 Oct 2022
01 Oct 2022
Historique:
pubmed:
26
8
2022
medline:
31
8
2022
entrez:
25
8
2022
Statut:
ppublish
Résumé
For years, the development of a totally implantable cochlear implant (TICI) has faced several technical challenges hindering any prototypes from reaching full commercialization. This article aims to review the necessary specifications for a viable TICI. An overview of the remaining challenges when designing TICIs will be provided, focusing on energy supply and implantable microphones. The literature review highlights how research efforts to generate sufficient power to supply a fully implantable CI could take advantage of microelectromechanical systems (MEMS)-based energy harvesters incorporating piezoelectric materials. Using one of the various energy sources in the vicinity of the temporal bone would allow the development of a self-sufficient implant, overcoming the limitations of electrochemical batteries. Middle ear implantable microphones could also use similar fabrication techniques and transduction mechanisms to meet the sensor requirements for a TICI. Recent breakthroughs in power supply using MEMS-based energy harvesting technologies and piezoelectric implantable microphones may make TICIs become a more practical reality in the foreseeable future. Once available, TICIs will have major impact on our patients' quality of life and may help to make hearing rehabilitation a more appealing option to a greater proportion of those who fulfill our candidacy criteria.
Identifiants
pubmed: 36004785
doi: 10.1097/MOO.0000000000000840
pii: 00020840-202210000-00003
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
298-302Informations de copyright
Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.
Références
Wilson BS, Dorman MF. Cochlear implants: current designs and future possibilities. J Rehabil Res Dev 2008; 45:695–730.
Carlson ML. Cochlear implantation in adults. N Engl J Med 2020; 382:1531–1542.
Wallhagen MI. The stigma of hearing loss. Gerontologist 2010; 50:66–75.
Rapport F, Lo CY, Elks B, et al. Cochlear implant aesthetics and its impact on stigma, social interaction and quality of life: a mixed-methods study protocol. BMJ Open 2022; 12:e058406.
Carlson ML, Driscoll CL, Gifford RH, et al. Cochlear implantation: current and future device options. Otolaryngol Clin North Am 2012; 45:221–248.
Cohen N. The totally implantable cochlear implant. Ear Hear 2007; 28:100S–101S.
Mitchell-Innes A, Morse R, Irving R, et al. Implantable microphones as an alternative to external microphones for cochlear implants. Cochlear Implants Int 2017; 18:304–313.
Chen DA, Backous DD, Arriaga MA, et al. Phase 1 clinical trial results of the Envoy System: a totally implantable middle ear device for sensorineural hearing loss. Otolaryngol Head Neck Surg 2004; 131:904–916.
Barbara M, Biagini M, Monini S. The totally implantable middle ear device ’Esteem’ for rehabilitation of severe sensorineural hearing loss. Acta Otolaryngol 2011; 131:399–404.
Pulcherio JO, Bittencourt AG, Burke PR, et al. Carina(R) and Esteem(R): a systematic review of fully implantable hearing devices. PLoS One 2014; 9:e110636.
Shohet JA, Kraus EM, Catalano PJ, et al. Totally implantable hearing system: five-year hearing results. Laryngoscope 2018; 128:210–216.
Banakis Hartl RM, Jenkins HA. Implantable hearing aids: where are we in 2020? Laryngoscope Investig Otolaryngol 2020; 5:1184–1191.
Suzuki S, Katane T, Saotome H, et al. A proposal of electric power generating system for implanted medical devices. IEEE Trans Magn 1999; 35:3586–3588.
Zak J, Hadas Z, Dusek D, et al. Model-based design of artificial zero power cochlear implant. Mechatronics 2015; 31:30–41.
Latif R, Noor MM, Yunas J, et al. Mechanical energy sensing and harvesting in micromachined polymer-based piezoelectric transducers for fully implanted hearing systems: a review. Polymers (Basel) 2021; 13:2276.
Fedder GK, Howe RT, Liu T-JK, et al. Technologies for cofabricating MEMS and electronics. Proc IEEE 2008; 96:306–322.
Yang G, Lyon RF, Drakakis EM. A 6 muW per channel analog biomimetic cochlear implant processor filterbank architecture with across channels AGC. IEEE Trans Biomed Circuits Syst 2015; 9:72–86.
Ilik B, Kl A, Şardan-Sukas O, et al. Thin film piezoelectric acoustic transducer for fully implantable cochlear implants. Sens Actuators A Phys 2018; 280:38–46.
Inaoka T, Shintaku H, Nakagawa T, et al. Piezoelectric materials mimic the function of the cochlear sensory epithelium. Proc Natl Acad Sci USA 2011; 108:18390–18395.
Lee HS, Chung J, Hwang G-T, et al. Flexible inorganic piezoelectric acoustic nanosensors for biomimetic artificial hair cells. Adv Funct Mater 2014; 24:6914–6921.
Koyuncuoğlu A, Ilik B, Chamanian S, et al. Bulk PZT cantilever based MEMS acoustic transducer for cochlear implant applications. Proceedings 2017; 1:584.
Yip M, Jin R, Nakajima HH, et al. A fully-implantable cochlear implant soc with piezoelectric middle-ear sensor and arbitrary waveform neural stimulation. IEEE J Solid-State Circuits 2015; 50:214–229.
Mercier PP, Lysaght AC, Bandyopadhyay S, et al. Energy extraction from the biologic battery in the inner ear. Nat Biotechnol 2012; 30:1240–1243.
Yamasaki T, Kodama H, Yasuno Y. Electret condenser microphones for hearing aids. In: 2008 13th international symposium on electrets. IEEE 2008; 134.
Calero D, Paul S, Gesing A, et al. A technical review and evaluation of implantable sensors for hearing devices. Biomed Eng Online 2018; 17:23.
Yanagihara N, Suzuki J, Gyo K, et al. Development of an implantable hearing aid using a piezoelectric vibrator of bimorph design: state of the art. Otolaryngol Head Neck Surg 1984; 92:706–712.
Briggs RJ, Eder HC, Seligman PM, et al. Initial clinical experience with a totally implantable cochlear implant research device. Otol Neurotol 2008; 29:114–119.
Jenkins HA, Uhler K. Speech perception comparisons using an implanted and an external microphone in existing cochlear implant users. Otol Neurotol 2012; 33:13–19.
Gerard JM, Demanez L, Salmon C, et al. Feasibility of an implanted microphone for cochlear implant listening. Eur Arch Otorhinolaryngol 2017; 274:1383–1390.
Jenkins HA, Uhler K. Otologics active middle ear implants. Otolaryngol Clin North Am 2014; 47:967–978.
Leysieffer H, Muller G, Zenner HP. An implantable microphone for electronic hearing aids. HNO 1997; 45:816–827.
Zenner HP, Limberger A, Baumann JW, et al. Phase III results with a totally implantable piezoelectric middle ear implant: speech audiometry, spatial hearing and psychosocial adjustment. Acta Otolaryngol 2004; 124:155–164.
Vujanic A, Pavelka R, Adamovic N, et al. Development of a totally implantable hearing aid. 23rd international conference on Microelectronics, 2002. MIEL 2002. IEEE 2002; 1:235–238.
Maniglia AJ, Abbass H, Azar T, et al. The middle ear bioelectronic microphone for a totally implantable cochlear hearing device for profound and total hearing loss. Am J Otol 1999; 20:602–611.
Young DJ, Zurcher MA, Semaan M, et al. MEMS capacitive accelerometer-based middle ear microphone. IEEE Trans Biomed Eng 2012; 59:3283–3292.
Kraus EM, Shohet JA, Catalano PJ. Envoy esteem totally implantable hearing system: phase 2 trial, 1-year hearing results. Otolaryngol Head Neck Surg 2011; 145:100–109.
Beker L, Zorlu Ö, Göksu N, et al. Stimulating auditory nerve with MEMS harvesters for fully implantable and self-powered cochlear implants. Transducers & eurosensors XXVII: the 17th international conference on solid-state sensors, actuators and microsystems 2013; 1663–1666.
Zhao C, Knisely KE, Colesa DJ, et al. Voltage readout from a piezoelectric intracochlear acoustic transducer implanted in a living guinea pig. Sci Rep 2019; 9:3711.
Park S, Guan X, Kim Y, et al. PVDF-based piezoelectric microphone for sound detection inside the cochlea: toward totally implantable cochlear implants. Trends Hear 2018; 22:2331216518774450.
Riggs WJ, Hiss MM, Skidmore J, et al. Utilizing electrocochleography as a microphone for fully implantable cochlear implants. Sci Rep 2020; 10:3714.