Sex and race differences in urinary Tumor Necrosis Factor-α (TNF-α) levels: Secondary analysis of the DASH-sodium trial.
Journal
Journal of human hypertension
ISSN: 1476-5527
Titre abrégé: J Hum Hypertens
Pays: England
ID NLM: 8811625
Informations de publication
Date de publication:
08 2023
08 2023
Historique:
received:
12
04
2022
accepted:
11
08
2022
revised:
25
07
2022
medline:
7
8
2023
pubmed:
26
8
2022
entrez:
25
8
2022
Statut:
ppublish
Résumé
Previous work in mouse models shows that urinary TNF-α levels become elevated when dietary salt (NaCl) intake increases. To examine if this relationship exists in humans, we conducted a secondary analysis of the Dietary Approaches to Stop Hypertension (DASH)-Sodium trial to determine levels of urinary TNF-α in 367 subjects categorized by race, sex, and blood pressure. The DASH-Sodium trial is a multicenter feeding trial in which subjects were randomly assigned to either the DASH or control diet, and high, medium, and low sodium in random order. Multivariable linear regression was used to model baseline TNF-α and a mixed model was used to model TNF-α as a function of dietary intervention. At baseline, with all subjects on a "typical American diet", urinary TNF-α levels were lowest in Black, p = 0.002 and male subjects, p < 0.001. After randomization to either the DASH or control diet, with increasing levels of sodium, urinary TNF-α levels increased only in subjects on the control diet, p < 0.05. As in the baseline analysis, TNF-α levels were highest in White females, then White males, Black females and lowest in Black males. The results indicate that urinary TNF-α levels in DASH-Sodium subjects are regulated by NaCl intake, modulated by the DASH diet, and influenced by both race and sex. The inherent differences between subgroups support studies in mice showing that increases in renal TNF-α minimize the extent salt-dependent activation of NKCC2.
Identifiants
pubmed: 36008598
doi: 10.1038/s41371-022-00748-z
pii: 10.1038/s41371-022-00748-z
doi:
Substances chimiques
Sodium
9NEZ333N27
Tumor Necrosis Factor-alpha
0
Sodium, Dietary
0
Sodium Chloride
451W47IQ8X
Sodium Chloride, Dietary
0
Types de publication
Randomized Controlled Trial
Multicenter Study
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
701-708Subventions
Organisme : NHLBI NIH HHS
ID : R21 HL140260
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL133077
Pays : United States
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, et al. Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop Hypertension (DASH) Diet. N Engl J Med. 2001;344:3–10.
pubmed: 11136953
doi: 10.1056/NEJM200101043440101
Gonzalez-Vicente A, Saez F, Monzon CM, Asirwatham J, Garvin JL. Thick Ascending Limb Sodium Transport in the Pathogenesis of Hypertension. Physiol Rev. 2019;99:235–309.
pubmed: 30354966
doi: 10.1152/physrev.00055.2017
Jung J, Basile DP, Pratt JH. Sodium reabsorption in the thick ascending limb in relation to blood pressure: a clinical perspective. Hypertension (Dallas, Tex: 1979) 2011;57:873–9.
pubmed: 21403087
doi: 10.1161/HYPERTENSIONAHA.108.120246
Caceres PS, Ortiz PA. Molecular regulation of NKCC2 in blood pressure control and hypertension. Curr Opin Nephrol Hypertens. 2019;28:474–80.
pubmed: 31313674
pmcid: 7226929
doi: 10.1097/MNH.0000000000000531
Herrera M, Ortiz PA, Garvin JL. Regulation of thick ascending limb transport: role of nitric oxide. Am J Physiol - Ren Physiol. 2006;290:F1279–84.
doi: 10.1152/ajprenal.00465.2005
Mutig K. Trafficking and regulation of the NKCC2 cotransporter in the thick ascending limb. Curr Opin Nephrol Hypertens. 2017;26:392–7.
pubmed: 28614115
doi: 10.1097/MNH.0000000000000351
Monette MY, Rinehart J, Lifton RP, Forbush B. Rare mutations in the human Na-K-Cl cotransporter (NKCC2) associated with lower blood pressure exhibit impaired processing and transport function. Am J Physiol - Ren Physiol. 2011;300:F840–47.
doi: 10.1152/ajprenal.00552.2010
Shahid M, Francis J, Majid DSA. Tumor necrosis factor-alpha induces renal vasoconstriction as well as natriuresis in mice. Am J Physiol - Ren Physiol. 2008;295:F1836–44.
doi: 10.1152/ajprenal.90297.2008
Shahid M, Francis J, Matrougui K, Majid DSA. Involvement of tumor necrosis factor-alpha in natriuretic response to systemic infusion of nitric oxide synthase inhibitor in anesthetized mice. Am J Physiol - Ren Physiol. 2010;299:F217–24.
doi: 10.1152/ajprenal.00611.2009
Battula S, Hao S, Pedraza PL, Stier CT, Ferreri NR. Tumor necrosis factor-alpha is an endogenous inhibitor of Na+-K+-2Cl- cotransporter (NKCC2) isoform A in the thick ascending limb. Am J Physiol - Ren Physiol. 2011;301:F94–100.
doi: 10.1152/ajprenal.00650.2010
Hao S, Bellner L, Ferreri NR. NKCC2A and NFAT5 regulate renal TNF production induced by hypertonic NaCl intake. Am J Physiol - Ren Physiol. 2013;304:F533–42.
doi: 10.1152/ajprenal.00243.2012
Hao S, Salzo J, Hao M, Ferreri NR. Regulation of NKCC2B by TNF-α in response to salt restriction. Am J Physiol - Ren Physiol. 2020;318:F273–82.
doi: 10.1152/ajprenal.00388.2019
Hao S, Hao M, Ferreri NR. Renal-Specific Silencing of TNF (Tumor Necrosis Factor) Unmasks Salt-Dependent Increases in Blood Pressure via an NKCC2A (Na(+)-K(+)-2Cl(-) Cotransporter Isoform A-Dependent Mechanism. Hypertension (Dallas, Tex: 1979). 2018;1117–25.
Hao S, Salzo J, Zhao H, Hao M, Darzynkiewicz Z, Ferreri NR. MicroRNA-133a-dependent inhibition of proximal tubule angiotensinogen by renal TNF (Tumor Necrosis Factor). Hypertension 2020;76:1744–52.
pubmed: 33131307
doi: 10.1161/HYPERTENSIONAHA.120.15435
Sabolic I, Asif AR, Budach WE, Wanke C, Bahn A, Burckhardt G. Gender differences in kidney function. Pflug Arch. 2007;455:397–429.
doi: 10.1007/s00424-007-0308-1
Tu W, Eckert GJ, Hannon TS, Liu H, Pratt LM, Wagner MA, et al. Racial differences in sensitivity of blood pressure to aldosterone. Hypertension 2014;63:1212–8.
pubmed: 24711519
doi: 10.1161/HYPERTENSIONAHA.113.02989
Veiras LC, Girardi ACC, Curry J, Pei L, Ralph DL, Tran A, et al. Sexual Dimorphic Pattern of Renal Transporters and Electrolyte Homeostasis. J Am Soc Nephrol. 2017;28:3504–17.
pubmed: 28774999
pmcid: 5698077
doi: 10.1681/ASN.2017030295
Juraschek SP, Miller ER 3rd, Chang AR, Anderson CAM, Hall JE, Appel LJ. Effects of sodium reduction on energy, metabolism, weight, thirst, and urine volume: Results From the DASH (Dietary Approaches to Stop Hypertension)-Sodium Trial. Hypertension 2020;75:723–9.
pubmed: 31957521
doi: 10.1161/HYPERTENSIONAHA.119.13932
Turban S, Thompson CB, Parekh RS, Appel LJ. Effects of sodium intake and diet on racial differences in urinary potassium excretion: results from the Dietary Approaches to Stop Hypertension (DASH)-Sodium trial. Am J Kidney Dis. 2013;61:88–95.
pubmed: 23157935
doi: 10.1053/j.ajkd.2012.08.036
García NSH, Plato CF, Stoos BA, Garvin JL. Nitric oxide–induced inhibition of transport by thick ascending limbs from Dahl salt-sensitive rats. Hypertension. 1999;34:508–13.
pubmed: 10489402
doi: 10.1161/01.HYP.34.3.508
Xu H, Chen H, Dong J, Li J, Chen R, Uno JK, et al. Tumor necrosis factor-{alpha} downregulates intestinal NHE8 expression by reducing basal promoter activity. Am J Physiol Cell Physiol. 2009;296:C489–C497.29.
pubmed: 19109523
doi: 10.1152/ajpcell.00482.2008
Garvin JL, Herrera M, Ortiz PA. Regulation of renal NaCl transport by nitric oxide, endothelin, and ATP: Clinical implications. Annu Rev Physiol. 2011;73:359–76.
pubmed: 20936940
doi: 10.1146/annurev-physiol-012110-142247
Leipziger J, Praetorius H. Renal autocrine and paracrine signaling: A story of self-protection. Physiol Rev. 2020;100:1229–89.
pubmed: 31999508
doi: 10.1152/physrev.00014.2019
Tu W, Pratt JH. A consideration of genetic mechanisms behind the development of hypertension in blacks. Curr Hypertens Rep. 2013;15:108–13.
pubmed: 23397215
pmcid: 3594543
doi: 10.1007/s11906-013-0332-9
Castrop H, Schießl IM. Physiology and pathophysiology of the renal Na-K-2Cl cotransporter (NKCC2). Am J Physiol Ren Physiol. 2014;307:F991–1002.
doi: 10.1152/ajprenal.00432.2014
Bankir L, Figueres L, Prot-Bertoye C, Bouby N, Crambert G, Pratt JH, et al. Medullary and cortical thick ascending limb: similarities and differences. Am J Physiol - Ren Physiol. 2020;318:F422–42.
doi: 10.1152/ajprenal.00261.2019
Chun TY, Bankir L, Eckert GJ, Bichet DG, Saha C, Zaidi SA, et al. Ethnic differences in renal responses to furosemide. Hypertension 2008;52:241–8.
pubmed: 18606909
doi: 10.1161/HYPERTENSIONAHA.108.109801
Pratt JH, Ambrosius WT, Agarwal R, Eckert GJ, Newman S. Racial difference in the activity of the amiloride-sensitive epithelial sodium channel. Hypertension 2002;40:903–8.
pubmed: 12468577
doi: 10.1161/01.HYP.0000039749.75068.F4
Hu R, McDonough AA, Layton AT. Sex differences in solute transport along the nephrons: Effects of Na(+) transport inhibition. Am J Physiol Ren Physiol. 2020;319:F487–505.
doi: 10.1152/ajprenal.00240.2020
Graham LA, Dominiczak AF, Ferreri NR. Role of renal transporters and novel regulatory interactions in the TAL that control blood pressure. Physiol Genomics. 2017;49:261–76.
pubmed: 28389525
pmcid: 5451551
doi: 10.1152/physiolgenomics.00017.2017
Bemelmans MH, Gourma DJ, Buurman WA. Influence of nephrectomy on tumor ncrosis factor clearance in a murine model. J Immunol. 1993;150:2007–17.
pubmed: 8436831
doi: 10.4049/jimmunol.150.5.2007
Beutler BA, Milsark IW, Cerami A. Cachectin/tumor necrosis factor: Production, distribution, and metabolic fate in vivo. J Immunol. 1995;135:3972–7.
doi: 10.4049/jimmunol.135.6.3972
Vollmer WM, Sacks FM, Ard J, Appel LJ, Bray GA, Simons-Morton DG, et al. Effects of diet and sodium intake on blood pressure: subgroup analysis of the DASH-sodium trial. Ann Intern Med. 2001;135:1019–28.
pubmed: 11747380
doi: 10.7326/0003-4819-135-12-200112180-00005
Whelton PK, He J, Cutler JA, Brancati FL, Appel LJ, Follmann D, et al. Effects of oral potassium on blood pressure. Meta-analysis of randomized controlled clinical trials. J Am Med Assoc. 1997;277:1624–32.
doi: 10.1001/jama.1997.03540440058033
Krishna GG, Miller E, Kapoor S. Increased blood pressure during potassium depletion in normotensive men. N Engl J Med. 1989;320:1177–82.
pubmed: 2624617
doi: 10.1056/NEJM198905043201804
Saito K, Sano H, Furuta Y, Fukuzaki H. Effect of oral calcium on blood pressure response in salt-loaded borderline hypertensive patients. Hypertension 1989;13:219–26.
pubmed: 2921077
doi: 10.1161/01.HYP.13.3.219
McDonough AA, Youn JH. Potassium homeostasis: The knowns, the unknowns, and the health benefits. Physiology 2017;32:100–11.
pubmed: 28202621
pmcid: 5337831
doi: 10.1152/physiol.00022.2016
Sigmund CD, Carey RM, Appel LJ, Arnett DK, Bosworth HB, Cushman WC, et al. Report of the national heart, lung, and blood institute working group on. Hypertension 2020;75:902–17.
pubmed: 32063061
doi: 10.1161/HYPERTENSIONAHA.119.13887
Terker AS, Zhang C, McCormick JA, Lazelle RA, Zhang C, Meermeier NP, et al. Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab. 2015;21:39–50.
pubmed: 25565204
pmcid: 4332769
doi: 10.1016/j.cmet.2014.12.006
Veiras LC, Han J, Ralph DL, McDonough AA. Potassium supplementation prevents sodium chloride cotransporter stimulation during angiotensin II hypertension. Hypertension 2016;68:904–12.
pubmed: 27600183
doi: 10.1161/HYPERTENSIONAHA.116.07389
Basdeki ED, Kollias A, Mitrou P, Tsirimiagkou C, Georgakis MK, Chatzigeorgiou A, et al. Does sodium intake induce systematic inflammatory response? A systematic review and meta-analysis of randomized studies in humans. Nutrients 2021;13:2632–47.
pubmed: 34444792
pmcid: 8399701
doi: 10.3390/nu13082632
Juraschek SP, Kovell LC, Appel LJ, Miller ER, Sacks FM, Chang AR, et al. Effects of Diet and Sodium Reduction on Cardiac Injury, Strain, and Inflammation-The DASH-Sodium Trial J. Am. Coll. Cardiol. 2021;77:2625–34.
Sullivan VK, Appel LJ, Seegmiller JC, McClure ST, Rebholz CM. A low-sodium DASH dietary pattern affect serum markers of inflammation and mineral metabolism in adults with elevated blood pressure. J Nutr. 2021;151:3067–74.
pubmed: 34293127
pmcid: 8485900
doi: 10.1093/jn/nxab236