Limb Remote Ischemic Conditioning Promotes Neurogenesis after Cerebral Ischemia by Modulating miR-449b/Notch1 Pathway in Mice.
Notch1
ischemic stroke
limb remote ischemic conditioning
miR-449b
neurogenesis
Journal
Biomolecules
ISSN: 2218-273X
Titre abrégé: Biomolecules
Pays: Switzerland
ID NLM: 101596414
Informations de publication
Date de publication:
18 08 2022
18 08 2022
Historique:
received:
17
07
2022
revised:
10
08
2022
accepted:
12
08
2022
entrez:
26
8
2022
pubmed:
27
8
2022
medline:
30
8
2022
Statut:
epublish
Résumé
Neurogenesis plays an important role in the prognosis of stroke patients and is known to be promoted by the activation of the Notch1 signaling pathway. Studies on the airway epithelium have shown that miR-449b represses the Notch pathway. The study aimed to investigate whether limb remote ischemic conditioning (LRIC) was able to promote neurogenesis in cerebral ischemic mice, and to investigate the role of the miR-449b/Notch1 pathway in LRIC-induced neuroprotection. Male C57BL/6 mice (22-25 g) were subjected to transient middle cerebral artery occlusion (MCAO), and LRIC was performed in the bilateral lower limbs immediately after MCA occlusion. Immunofluorescence staining was performed to assess neurogenesis. The cell line NE-4C was used to elucidate the proliferation of neuronal stem cells in 8% O
Identifiants
pubmed: 36009031
pii: biom12081137
doi: 10.3390/biom12081137
pmc: PMC9405712
pii:
doi:
Substances chimiques
MicroRNAs
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Références
Brain Circ. 2019 Jan-Mar;5(1):1-7
pubmed: 31001593
Exp Neurol. 2018 Jun;304:30-40
pubmed: 29481785
Prog Neurobiol. 2014 Apr;115:116-37
pubmed: 24384539
J Cereb Blood Flow Metab. 2009 Oct;29(10):1644-54
pubmed: 19536070
PLoS One. 2012;7(10):e46326
pubmed: 23110048
Restor Neurol Neurosci. 2015;33(3):369-79
pubmed: 25868435
Cardiol Res Pract. 2012;2012:620681
pubmed: 22400123
Science. 1999 Apr 30;284(5415):770-6
pubmed: 10221902
Aging Dis. 2015 Aug 01;6(4):245-53
pubmed: 26236546
Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):E2851-7
pubmed: 24982181
Mol Cells. 2005 Feb 28;19(1):1-15
pubmed: 15750334
Dev Neurosci. 2006;28(1-2):81-91
pubmed: 16508306
Brain Circ. 2019 Jan-Mar;5(1):8-11
pubmed: 31001594
Nat Cell Biol. 2011 Jun;13(6):693-9
pubmed: 21602795
J Neurosci. 2003 Mar 1;23(5):1730-41
pubmed: 12629177
Behav Brain Res. 2018 Mar 15;340:87-93
pubmed: 27780723
J Cereb Blood Flow Metab. 2006 Sep;26(9):1114-21
pubmed: 16736038
Brain Res. 2015 Oct 14;1623:166-73
pubmed: 25736182
Exp Neurol. 2022 Jan;347:113871
pubmed: 34563509
EMBO J. 2016 Nov 15;35(22):2386-2398
pubmed: 27707753
Prog Neurobiol. 2018 Apr - May;163-164:59-78
pubmed: 28842356
J Neurosci. 1995 Jul;15(7 Pt 2):5372-8
pubmed: 7623159
Aging Dis. 2021 Aug 1;12(5):1197-1210
pubmed: 34341702
Brain Circ. 2020 Feb 18;6(1):11-18
pubmed: 32166195
Front Mol Neurosci. 2021 Jan 07;13:612439
pubmed: 33488360
Stroke. 2004 Jul;35(7):1732-7
pubmed: 15178821
Aging Dis. 2020 May 9;11(3):603-617
pubmed: 32489705
J Cereb Blood Flow Metab. 2010 Jan;30(1):92-101
pubmed: 19724284
Stroke. 2015 Sep;46(9):2691-4
pubmed: 26243221
Nat Rev Neurol. 2015 Dec;11(12):698-710
pubmed: 26585977
Medicine (Baltimore). 2016 Mar;95(13):e3186
pubmed: 27043681
Int J Mol Sci. 2022 Jan 14;23(2):
pubmed: 35055089
J Cereb Blood Flow Metab. 2013 May;33(5):625-34
pubmed: 23403379
J Cereb Blood Flow Metab. 2014 Oct;34(10):1573-84
pubmed: 25074747
J Cereb Blood Flow Metab. 2016 Dec;36(12):2034-2043
pubmed: 27742890
Lancet. 2016 Apr 23;387(10029):1723-31
pubmed: 26898852
Behav Brain Res. 2012 Feb 14;227(2):426-32
pubmed: 21907736
Lancet Neurol. 2021 Oct;20(10):795-820
pubmed: 34487721
Stroke. 1996 Sep;27(9):1616-22; discussion 1623
pubmed: 8784138
Exp Neurol. 2015 Jun;268:37-45
pubmed: 25263580