Regularized Spectral Spike Response Model: A Neuron Model for Robust Parameter Reduction.
Izhikevich neuron model
neuron models
spike response model
Journal
Brain sciences
ISSN: 2076-3425
Titre abrégé: Brain Sci
Pays: Switzerland
ID NLM: 101598646
Informations de publication
Date de publication:
29 Jul 2022
29 Jul 2022
Historique:
received:
30
05
2022
revised:
12
07
2022
accepted:
25
07
2022
entrez:
26
8
2022
pubmed:
27
8
2022
medline:
27
8
2022
Statut:
epublish
Résumé
The modeling procedure of current biological neuron models is hindered by either hyperparameter optimization or overparameterization, which limits their application to a variety of biologically realistic tasks. This article proposes a novel neuron model called the Regularized Spectral Spike Response Model (RSSRM) to address these issues. The selection of hyperparameters is avoided by the model structure and fitting strategy, while the number of parameters is constrained by regularization techniques. Twenty firing simulation experiments indicate the superiority of RSSRM. In particular, after pruning more than 99% of its parameters, RSSRM with 100 parameters achieves an RMSE of 5.632 in membrane potential prediction, a VRD of 47.219, and an F1-score of 0.95 in spike train forecasting with correct timing (±1.4 ms), which are 25%, 99%, 55%, and 24% better than the average of other neuron models with the same number of parameters in RMSE, VRD, F1-score, and correct timing, respectively. Moreover, RSSRM with 100 parameters achieves a memory use of 10 KB and a runtime of 1 ms during inference, which is more efficient than the Izhikevich model.
Identifiants
pubmed: 36009071
pii: brainsci12081008
doi: 10.3390/brainsci12081008
pmc: PMC9405574
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : Ministry of Science and Technology
ID : 2020AAA0109102
Références
Neuron. 2021 Sep 1;109(17):2727-2739.e3
pubmed: 34380016
Neural Comput. 2017 Dec;29(12):3260-3289
pubmed: 28957020
Biol Cybern. 2008 Nov;99(4-5):335-47
pubmed: 19011922
J Neurosci. 2003 Dec 17;23(37):11628-40
pubmed: 14684865
J Neurosci. 2005 Nov 23;25(47):11003-13
pubmed: 16306413
Biophys J. 1961 Jul;1(6):445-66
pubmed: 19431309
J Neurosci Methods. 2008 Apr 30;169(2):417-24
pubmed: 18160135
Neuron. 2001 Jun;30(3):803-17
pubmed: 11430813
Neural Comput. 2001 Apr;13(4):751-63
pubmed: 11255567
Biophys J. 1981 Jul;35(1):193-213
pubmed: 7260316
J Neurophysiol. 1996 Jan;75(1):367-79
pubmed: 8822564
J Physiol. 1952 Aug;117(4):500-44
pubmed: 12991237
IEEE Trans Neural Netw. 2003;14(6):1569-72
pubmed: 18244602
Nat Rev Neurosci. 2004 Oct;5(10):793-807
pubmed: 15378039
Network. 2004 Nov;15(4):243-62
pubmed: 15600233
J Neurophysiol. 2004 Aug;92(2):959-76
pubmed: 15277599
J Neurophysiol. 1999 Nov;82(5):2476-89
pubmed: 10561420
J Comput Neurosci. 2006 Aug;21(1):35-49
pubmed: 16633938
Nature. 2008 Aug 21;454(7207):995-9
pubmed: 18650810
IEEE Trans Neural Netw. 2004 Sep;15(5):1063-70
pubmed: 15484883
Network. 2012;23(1-2):48-58
pubmed: 22568695