Regularized Spectral Spike Response Model: A Neuron Model for Robust Parameter Reduction.

Izhikevich neuron model neuron models spike response model

Journal

Brain sciences
ISSN: 2076-3425
Titre abrégé: Brain Sci
Pays: Switzerland
ID NLM: 101598646

Informations de publication

Date de publication:
29 Jul 2022
Historique:
received: 30 05 2022
revised: 12 07 2022
accepted: 25 07 2022
entrez: 26 8 2022
pubmed: 27 8 2022
medline: 27 8 2022
Statut: epublish

Résumé

The modeling procedure of current biological neuron models is hindered by either hyperparameter optimization or overparameterization, which limits their application to a variety of biologically realistic tasks. This article proposes a novel neuron model called the Regularized Spectral Spike Response Model (RSSRM) to address these issues. The selection of hyperparameters is avoided by the model structure and fitting strategy, while the number of parameters is constrained by regularization techniques. Twenty firing simulation experiments indicate the superiority of RSSRM. In particular, after pruning more than 99% of its parameters, RSSRM with 100 parameters achieves an RMSE of 5.632 in membrane potential prediction, a VRD of 47.219, and an F1-score of 0.95 in spike train forecasting with correct timing (±1.4 ms), which are 25%, 99%, 55%, and 24% better than the average of other neuron models with the same number of parameters in RMSE, VRD, F1-score, and correct timing, respectively. Moreover, RSSRM with 100 parameters achieves a memory use of 10 KB and a runtime of 1 ms during inference, which is more efficient than the Izhikevich model.

Identifiants

pubmed: 36009071
pii: brainsci12081008
doi: 10.3390/brainsci12081008
pmc: PMC9405574
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : Ministry of Science and Technology
ID : 2020AAA0109102

Références

Neuron. 2021 Sep 1;109(17):2727-2739.e3
pubmed: 34380016
Neural Comput. 2017 Dec;29(12):3260-3289
pubmed: 28957020
Biol Cybern. 2008 Nov;99(4-5):335-47
pubmed: 19011922
J Neurosci. 2003 Dec 17;23(37):11628-40
pubmed: 14684865
J Neurosci. 2005 Nov 23;25(47):11003-13
pubmed: 16306413
Biophys J. 1961 Jul;1(6):445-66
pubmed: 19431309
J Neurosci Methods. 2008 Apr 30;169(2):417-24
pubmed: 18160135
Neuron. 2001 Jun;30(3):803-17
pubmed: 11430813
Neural Comput. 2001 Apr;13(4):751-63
pubmed: 11255567
Biophys J. 1981 Jul;35(1):193-213
pubmed: 7260316
J Neurophysiol. 1996 Jan;75(1):367-79
pubmed: 8822564
J Physiol. 1952 Aug;117(4):500-44
pubmed: 12991237
IEEE Trans Neural Netw. 2003;14(6):1569-72
pubmed: 18244602
Nat Rev Neurosci. 2004 Oct;5(10):793-807
pubmed: 15378039
Network. 2004 Nov;15(4):243-62
pubmed: 15600233
J Neurophysiol. 2004 Aug;92(2):959-76
pubmed: 15277599
J Neurophysiol. 1999 Nov;82(5):2476-89
pubmed: 10561420
J Comput Neurosci. 2006 Aug;21(1):35-49
pubmed: 16633938
Nature. 2008 Aug 21;454(7207):995-9
pubmed: 18650810
IEEE Trans Neural Netw. 2004 Sep;15(5):1063-70
pubmed: 15484883
Network. 2012;23(1-2):48-58
pubmed: 22568695

Auteurs

Yinuo Zeng (Y)

Nanjing Institute of Intelligent Technology, Nanjing 210000, China.

Wendi Bao (W)

Nanjing Institute of Intelligent Technology, Nanjing 210000, China.

Liying Tao (L)

Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100000, China.
University of Chinese Academy of Sciences, Beijing 100000, China.

Die Hu (D)

Nanjing Institute of Intelligent Technology, Nanjing 210000, China.

Zonglin Yang (Z)

Nanjing Institute of Intelligent Technology, Nanjing 210000, China.

Liren Yang (L)

Nanjing Institute of Intelligent Technology, Nanjing 210000, China.

Delong Shang (D)

Nanjing Institute of Intelligent Technology, Nanjing 210000, China.
Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100000, China.
University of Chinese Academy of Sciences, Beijing 100000, China.

Classifications MeSH