The Glyoxalase System Is a Novel Cargo of Amniotic Fluid Stem-Cell-Derived Extracellular Vesicles.

D-lactate GSH MG-H1 extracellular vesicles glyoxalases human amniotic fluid methylglyoxal stem cells

Journal

Antioxidants (Basel, Switzerland)
ISSN: 2076-3921
Titre abrégé: Antioxidants (Basel)
Pays: Switzerland
ID NLM: 101668981

Informations de publication

Date de publication:
05 Aug 2022
Historique:
received: 29 06 2022
revised: 28 07 2022
accepted: 03 08 2022
entrez: 26 8 2022
pubmed: 27 8 2022
medline: 27 8 2022
Statut: epublish

Résumé

The glyoxalase system is a ubiquitous cellular metabolic pathway whose main physiological role is the removal of methylglyoxal (MG). MG, a glycolysis byproduct formed by the spontaneous degradation of triosephosphates glyceraldehyde-3-phosphate (GA3P) and dihydroxyacetonephosphate (DHAP), is an arginine-directed glycating agent and precursor of the major advanced glycation end product arginine-derived, hydroimidazolone (MG-H1). Extracellular vesicles (EVs) are a heterogeneous family of lipid-bilayer-vesicular structures released by virtually all living cells, involved in cell-to-cell communication, specifically by transporting biomolecules to recipient cells, driving distinct biological responses. Emerging evidence suggests that included in the EVs cargo there are different metabolic enzymes. Specifically, recent research has pointed out that EVs derived from human amniotic fluid stem cell (HASC-EVs) contain glycolytic pay-off phase enzymes, such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Since GAPDH catalyzes the sixth step of glycolysis using as a substrate GA3P, from which MG spontaneously origins, we wanted to investigate whether MG-derived MG-H1, as well as glyoxalases, could be novel molecule cargo in these EVs. By using immunoassays and spectrophotometric methods, we found, for the first time ever, that HASC-EVs contain functional glyoxalases and MG-H1, pioneering research to novel and exciting roles of these eclectic proteins, bringing them to the limelight once more.

Identifiants

pubmed: 36009243
pii: antiox11081524
doi: 10.3390/antiox11081524
pmc: PMC9405222
pii:
doi:

Types de publication

Journal Article

Langues

eng

Références

Prostate. 2017 Feb;77(2):196-210
pubmed: 27696457
Chem Res Toxicol. 2021 Dec 20;34(12):2424-2440
pubmed: 34851609
Nat Chem Biol. 2017 Sep;13(9):951-955
pubmed: 28671681
Cell Biochem Funct. 2016 Dec;34(8):620-627
pubmed: 27935136
Eur J Pharmacol. 2008 Sep 28;593(1-3):30-5
pubmed: 18692042
FEBS Lett. 2006 Mar 6;580(6):1565-70
pubmed: 16487519
Glycoconj J. 2021 Jun;38(3):331-340
pubmed: 33644826
FASEB J. 2022 Apr;36(4):e22218
pubmed: 35218567
Vaccines (Basel). 2021 Nov 11;9(11):
pubmed: 34835243
Antioxidants (Basel). 2021 May 01;10(5):
pubmed: 34062923
Int J Mol Sci. 2022 Jul 03;23(13):
pubmed: 35806411
Mol Carcinog. 2017 Sep;56(9):2112-2126
pubmed: 28470764
J Biol Chem. 2002 Nov 29;277(48):45770-5
pubmed: 12226095
Int J Mol Sci. 2022 Mar 28;23(7):
pubmed: 35409048
Sci Rep. 2017 Sep 15;7(1):11722
pubmed: 28916747
Antioxidants (Basel). 2020 Dec 28;10(1):
pubmed: 33379155
J Alzheimers Dis. 2021;84(1):227-237
pubmed: 34487040
Cell Stress Chaperones. 2018 May;23(3):441-454
pubmed: 29086335
Rejuvenation Res. 2022 Jul 19;:
pubmed: 35850516
Int J Mol Sci. 2022 Jan 06;23(2):
pubmed: 35054775
Mol Biosyst. 2015 Jun;11(6):1622-32
pubmed: 25811139
Am J Physiol Endocrinol Metab. 2013 Mar 15;304(6):E576-82
pubmed: 23341497
Clin Chim Acta. 2019 Jan;488:116-121
pubmed: 30395864
Chem Biol Interact. 2009 Nov 10;182(1):13-21
pubmed: 19679115
Int J Mol Sci. 2019 Oct 03;20(19):
pubmed: 31623327
Biochem Biophys Res Commun. 2018 Jun 12;500(4):892-896
pubmed: 29702093
Biochemistry (Mosc). 2017 Jul;82(7):751-759
pubmed: 28918740
Int J Biochem Cell Biol. 2010 May;42(5):749-54
pubmed: 20083221
Antioxidants (Basel). 2022 Jun 09;11(6):
pubmed: 35740031
Mol Ther Nucleic Acids. 2021 May 01;24:1024-1032
pubmed: 34141457
Int J Mol Sci. 2018 Jan 31;19(2):
pubmed: 29385039
Int J Mol Sci. 2021 Sep 22;22(19):
pubmed: 34638532
Biochim Biophys Acta Mol Basis Dis. 2022 Oct 1;1868(10):166484
pubmed: 35811032
Biochemistry. 1988 Sep 20;27(19):7376-84
pubmed: 3207683
Int J Mol Sci. 2022 Feb 04;23(3):
pubmed: 35163695
Methods Enzymol. 2020;645:181-194
pubmed: 33565971
J Biol Chem. 1999 Jul 2;274(27):18947-56
pubmed: 10383393
J Cell Mol Med. 2015 Jul;19(7):1593-605
pubmed: 25783564
Biochem J. 1990 Jul 1;269(1):1-11
pubmed: 2198020
Gerontology. 2013;59(5):427-37
pubmed: 23797271
Biochem J. 2013 Jul 1;453(1):1-15
pubmed: 23763312
Methods Mol Biol. 2019;1885:287-294
pubmed: 30506205
Mol Cell Proteomics. 2013 Jan;12(1):228-36
pubmed: 23118466
Cell Stress Chaperones. 2019 Mar;24(2):419-426
pubmed: 30756294
Theranostics. 2020 May 1;10(13):5979-5997
pubmed: 32483432
Antioxidants (Basel). 2019 Jan 17;8(1):
pubmed: 30658464
Oxid Med Cell Longev. 2019 Jul 22;2019:8576961
pubmed: 31428230
PLoS One. 2013 May 31;8(5):e65430
pubmed: 23741493
Hum Reprod. 2011 Jul;26(7):1843-59
pubmed: 21558076
Front Physiol. 2020 Jun 23;11:609
pubmed: 32655405
Open Biol. 2021 Dec;11(12):210276
pubmed: 34847775
FEBS J. 2007 Mar;274(6):1530-41
pubmed: 17480204
Lab Chip. 2021 May 18;21(10):1956-1973
pubmed: 34008619
Antioxidants (Basel). 2020 Oct 01;9(10):
pubmed: 33019494

Auteurs

Rita Romani (R)

Department of Medicine and Surgery, University of Perugia, L. Severi square, 06129 Perugia, Italy.

Vincenzo Nicola Talesa (VN)

Department of Medicine and Surgery, University of Perugia, L. Severi square, 06129 Perugia, Italy.

Cinzia Antognelli (C)

Department of Medicine and Surgery, University of Perugia, L. Severi square, 06129 Perugia, Italy.

Classifications MeSH