Whole-Genome Identification of APX and CAT Gene Families in Cultivated and Wild Soybeans and Their Regulatory Function in Plant Development and Stress Response.
G. max
G. soja
ascorbate peroxidase
catalyze
legumes
Journal
Antioxidants (Basel, Switzerland)
ISSN: 2076-3921
Titre abrégé: Antioxidants (Basel)
Pays: Switzerland
ID NLM: 101668981
Informations de publication
Date de publication:
22 Aug 2022
22 Aug 2022
Historique:
received:
15
06
2022
revised:
10
08
2022
accepted:
10
08
2022
entrez:
26
8
2022
pubmed:
27
8
2022
medline:
27
8
2022
Statut:
epublish
Résumé
Plants coevolved with their antioxidant defense systems, which detoxify and adjust levels of reactive oxygen species (ROS) under multiple plant stresses. We performed whole-genome identification of ascorbate peroxidase (APX) and catalase (CAT) families in cultivated and wild soybeans. In cultivated and wild soybean genomes, we identified 11 and 10 APX genes, respectively, whereas the numbers of identified CAT genes were four in each species. Comparative phylogenetic analysis revealed more homology among cultivated and wild soybeans relative to other legumes. Exon/intron structure, motif and synteny blocks are conserved in cultivated and wild species. According to the Ka/Ks value, purifying selection is a major force for evolution of these gene families in wild soybean; however, the APX gene family was evolved by both positive and purifying selection in cultivated soybean. Segmental duplication was a major factor involved in the expansion of APX and CAT genes. Expression patterns revealed that APX and CAT genes are differentially expressed across fourteen different soybean tissues under water deficit (WD), heat stress (HS) and combined drought plus heat stress (WD + HS). Altogether, the current study provides broad insights into these gene families in soybeans. Our results indicate that APX and CAT gene families modulate multiple stress response in soybeans.
Identifiants
pubmed: 36009347
pii: antiox11081626
doi: 10.3390/antiox11081626
pmc: PMC9404807
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : Zhejiang Lab
ID : Grant No. 2021PE0AC04
Références
Genes (Basel). 2020 Oct 15;11(10):
pubmed: 33076444
Plant J. 2007 Nov;52(4):640-57
pubmed: 17877712
Mol Genet Genomics. 2008 Feb;279(2):171-82
pubmed: 18026995
Physiol Plant. 2021 May;172(1):41-52
pubmed: 33179765
Genome Biol. 2002;3(12):RESEARCH0068
pubmed: 12537557
Plant Mol Biol. 1995 Dec;29(5):1005-14
pubmed: 8555444
BMC Plant Biol. 2012 Jul 09;12:106
pubmed: 22776508
Genet Mol Biol. 2012 Dec;35(4 (suppl)):1011-9
pubmed: 23412747
Int J Mol Sci. 2015 Jun 12;16(6):13561-78
pubmed: 26075872
Proteins. 2006 Aug 15;64(3):643-51
pubmed: 16752418
Genes (Basel). 2021 Feb 25;12(3):
pubmed: 33668872
Antioxidants (Basel). 2020 Jul 29;9(8):
pubmed: 32751256
J Mol Evol. 2004 Dec;59(6):761-70
pubmed: 15599508
Science. 2006 Jun 2;312(5778):1392-6
pubmed: 16614172
Science. 2000 Nov 10;290(5494):1151-5
pubmed: 11073452
Oxid Med Cell Longev. 2019 Nov 11;2019:9613090
pubmed: 31827713
Genomics. 2021 Jan;113(1 Pt 2):1029-1043
pubmed: 33157261
Nature. 2010 Jan 14;463(7278):178-83
pubmed: 20075913
Bioinformatics. 2015 Apr 15;31(8):1296-7
pubmed: 25504850
BMC Plant Biol. 2010 Sep 13;10:197
pubmed: 20836857
J Plant Physiol. 2012 Jan 1;169(1):86-97
pubmed: 21893366
J Agric Food Chem. 2021 Aug 4;69(30):8307-8323
pubmed: 34288688
Int J Mol Sci. 2017 Apr 12;18(4):
pubmed: 28417911
Physiol Plant. 2021 Jun;172(2):707-732
pubmed: 32984966
Plant Cell Physiol. 2009 Jul;50(7):1260-76
pubmed: 19546148
Trends Plant Sci. 2017 Jan;22(1):11-19
pubmed: 27666517
Front Plant Sci. 2016 Mar 22;7:301
pubmed: 27047498
PLoS One. 2013 Apr 30;8(4):e62288
pubmed: 23638026
Nat Commun. 2013;4:2797
pubmed: 24256998
Genomics. 2020 Jan;112(1):749-763
pubmed: 31095998
Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W369-73
pubmed: 16845028
J Biol Chem. 2003 Nov 21;278(47):46869-77
pubmed: 12954611
Plant Physiol Biochem. 2017 Feb;111:203-215
pubmed: 27940271
Genet Mol Biol. 2016 Jul-Sep;39(3):408-15
pubmed: 27560990
Planta. 2005 Nov;222(5):926-32
pubmed: 16034597
Eur J Biochem. 1991 Jul 1;199(1):211-5
pubmed: 1712298
Saudi J Biol Sci. 2021 Apr;28(4):2323-2341
pubmed: 33911947
BMC Plant Biol. 2013 Oct 03;13:148
pubmed: 24088323
Nucleic Acids Res. 2000 Jan 1;28(1):231-4
pubmed: 10592234
Comput Biol Chem. 2018 Dec;77:413-429
pubmed: 30476702
Nat Rev Genet. 2015 Apr;16(4):237-51
pubmed: 25752530
BMC Genomics. 2013;14 Suppl 1:S5
pubmed: 23368680
Cells. 2019 Jan 24;8(2):
pubmed: 30682777
Mol Genet Genomics. 2018 Jun;293(3):685-697
pubmed: 29307114
Proc Natl Acad Sci U S A. 2010 Dec 21;107(51):22032-7
pubmed: 21131573
Int J Mol Sci. 2019 Jun 25;20(12):
pubmed: 31242611
Int J Genomics. 2016;2016:8740901
pubmed: 27660755
Plant J. 2011 Oct;68(2):302-13
pubmed: 21707801
Front Nutr. 2020 Oct 06;7:580715
pubmed: 33123549
J Plant Physiol. 2009 Jul 1;166(10):1057-68
pubmed: 19261356
Bioinformatics. 2012 Apr 1;28(7):1028-30
pubmed: 22296788
Genomics. 2022 Jan;114(1):45-60
pubmed: 34813918
J Integr Plant Biol. 2008 Oct;50(10):1318-26
pubmed: 19017119
Plant Signal Behav. 2008 Mar;3(3):194-6
pubmed: 19704716
Methods. 2001 Dec;25(4):402-8
pubmed: 11846609
Sci China Life Sci. 2019 Sep;62(9):1257-1260
pubmed: 31444683
Annu Rev Immunol. 2003;21:139-76
pubmed: 12414722
J Exp Bot. 2008;59(15):4095-107
pubmed: 18832187
PLoS One. 2021 Jul 2;16(7):e0253836
pubmed: 34214130
Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5930-4
pubmed: 7597056
Nucleic Acids Res. 2002 Jan 1;30(1):325-7
pubmed: 11752327
Mol Biol Evol. 2016 Jul;33(7):1870-4
pubmed: 27004904
Plant Cell Environ. 2010 Apr;33(4):453-67
pubmed: 19712065
J Hered. 2002 Jan-Feb;93(1):77-8
pubmed: 12011185
Plant Physiol. 1991 Nov;97(3):962-8
pubmed: 16668537
Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3708-13
pubmed: 9520431
Genome Biol Evol. 2015 Mar 13;7(4):1068-81
pubmed: 25769696