Rapid and Efficient Extraction of Cell-Free DNA Using Homobifunctional Crosslinkers.
cfDNA
crosslinker
extraction
homobifunctional
magnetic beads
Journal
Biomedicines
ISSN: 2227-9059
Titre abrégé: Biomedicines
Pays: Switzerland
ID NLM: 101691304
Informations de publication
Date de publication:
04 Aug 2022
04 Aug 2022
Historique:
received:
02
07
2022
revised:
31
07
2022
accepted:
01
08
2022
entrez:
26
8
2022
pubmed:
27
8
2022
medline:
27
8
2022
Statut:
epublish
Résumé
Since its discovery in circulating blood seven decades ago, cell-free DNA (cfDNA) has become a highly focused subject in cancer management using liquid biopsy. Despite its clinical utility, the extraction of cfDNA from blood has many technical difficulties, including a low efficiency of recovery and long processing times. We introduced a magnetic bead-based cfDNA extraction method using homobifunctional crosslinkers, including dimethyl suberimidate dihydrochloride (DMS). Owing to its bifunctional nature, DMS can bind to DNA through either covalent or electrostatic bonding. By adopting amine-conjugated magnetic beads, DMS-DNA complexes can be rapidly isolated from blood plasma. Using standard washing and eluting processes, we successfully extracted cfDNA from plasma within 10 min. This method yielded a 56% higher extraction efficiency than that of a commercial product (QIAamp kit). Furthermore, the instant binding mechanism of amine coupling between the microbeads and DMS-DNA complexes significantly reduced the processing time. These results highlight the potential of this magnetic bead-based homobifunctional crosslinker platform for extraction of cfDNA from blood plasma.
Identifiants
pubmed: 36009429
pii: biomedicines10081883
doi: 10.3390/biomedicines10081883
pmc: PMC9405790
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : National Research Foundation of Korea
ID : 2016R1A5A1010148
Références
Cancer. 1983 Jun 1;51(11):2116-20
pubmed: 6188527
Biomedicines. 2021 Jan 02;9(1):
pubmed: 33401715
Clin Chem. 2003 Apr;49(4):562-9
pubmed: 12651807
Biochim Biophys Acta. 2007 Jan;1775(1):181-232
pubmed: 17137717
Gene. 2016 Sep 15;590(1):142-8
pubmed: 27317895
Clin Chem. 2013 Jan;59(1):211-24
pubmed: 23065472
NPJ Precis Oncol. 2020 Feb 24;4:3
pubmed: 32133418
Lab Chip. 2018 May 1;18(9):1320-1329
pubmed: 29658031
Sci Rep. 2018 Apr 3;8(1):5467
pubmed: 29615736
J Sep Sci. 2021 Jan;44(1):188-210
pubmed: 33108044
Ann N Y Acad Sci. 2008 Aug;1137:190-6
pubmed: 18837946
PLoS One. 2020 Jun 1;15(6):e0231854
pubmed: 32479545
Cancer Res. 1977 Mar;37(3):646-50
pubmed: 837366
Methods Enzymol. 2014;541:85-94
pubmed: 24674064
Cancer Genet. 2018 Dec;228-229:21-27
pubmed: 30553469
Clin Chem. 2022 Jul 3;68(7):963-972
pubmed: 35616097
J Mol Diagn. 2017 Jan;19(1):162-168
pubmed: 27865784
C R Seances Soc Biol Fil. 1948 Feb;142(3-4):241-3
pubmed: 18875018
Biol Res Nurs. 2016 Oct;18(5):477-88
pubmed: 27067611
Nucleic Acids Res. 1981 Feb 25;9(4):993-1004
pubmed: 7015289
Clin Chim Acta. 2003 Jan;327(1-2):95-101
pubmed: 12482623
Nat Rev Cancer. 2017 Apr;17(4):223-238
pubmed: 28233803
Clin Chem. 2007 Dec;53(12):2215
pubmed: 18267930
Sci Transl Med. 2012 May 30;4(136):136ra68
pubmed: 22649089
Biosens Bioelectron. 2018 Jul 15;111:66-73
pubmed: 29653418
Adv Sci (Weinh). 2018 Jul 30;5(10):1800614
pubmed: 30356899