TERT and TET2 Genetic Variants Affect Leukocyte Telomere Length and Clinical Outcome in Coronary Artery Disease Patients-A Possible Link to Clonal Hematopoiesis.
TERT
TET2
clonal hematopoiesis
genetic variation
telomere
Journal
Biomedicines
ISSN: 2227-9059
Titre abrégé: Biomedicines
Pays: Switzerland
ID NLM: 101691304
Informations de publication
Date de publication:
19 Aug 2022
19 Aug 2022
Historique:
received:
05
07
2022
revised:
16
08
2022
accepted:
16
08
2022
entrez:
26
8
2022
pubmed:
27
8
2022
medline:
27
8
2022
Statut:
epublish
Résumé
Inherited and acquired mutations in hematopoietic stem cells can cause clonal expansion with increased risk of cardiovascular disease (CVD), a condition known for the clonal hematopoiesis of indeterminate potential (CHIP). Inherited genetic variants in two CHIP-associated genome loci, the telomerase gene telomerase enzyme reverse transcriptase (TERT) (rs7705526) and the epigenetic regulator ten−eleven translocation 2 (TET2) (rs2454206), were investigated in 1001 patients with stable coronary artery disease (CAD) (mean age 62 years, 22% women), with regards to cardiovascular outcome, comorbidities, and leukocyte telomere length. Over 2 years, mutated TERT increased the risk two-fold for major clinical events (MACEs) in all patients (p = 0.004), acute myocardial infarction (AMI) in male patients (p = 0.011), and stroke in female patients (p < 0.001). Mutated TET2 correlated with type 2 diabetes (p < 0.001), the metabolic syndrome (p = 0.002), as well as fasting glucose, HbA1c, and shorter telomeres (p = 0.032, p = 0.003, and p = 0.016, respectively). In conclusion, our results from stable CAD patients highlight TERTs’ role in CVD, and underline TET2s’ role in the epigenetic regulation of lifestyle-related diseases.
Identifiants
pubmed: 36009574
pii: biomedicines10082027
doi: 10.3390/biomedicines10082027
pmc: PMC9406025
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
Hepatology. 2010 Dec;52(6):1992-2000
pubmed: 20890895
Genes (Basel). 2016 Jun 17;7(6):
pubmed: 27322328
PLoS Genet. 2020 Oct 22;16(10):e1009078
pubmed: 33090998
Nat Genet. 2013 Apr;45(4):371-84, 384e1-2
pubmed: 23535731
Cell Rep. 2020 Oct 27;33(4):108326
pubmed: 33113366
FEBS Lett. 2018 Jun;592(12):2023-2031
pubmed: 29749098
Science. 2017 Feb 24;355(6327):842-847
pubmed: 28104796
Nature. 2020 Oct;586(7831):769-775
pubmed: 33057200
Sci Adv. 2022 Apr 8;8(14):eabl6579
pubmed: 35385311
Circulation. 2005 Oct 25;112(17):2735-52
pubmed: 16157765
Blood. 2017 Aug 10;130(6):753-762
pubmed: 28655780
Nature. 2020 Oct;586(7831):763-768
pubmed: 33057201
Blood. 2016 Aug 25;128(8):1121-8
pubmed: 27365426
Mediterr J Hematol Infect Dis. 2020 Jan 01;12(1):e2020004
pubmed: 31934314
Cell Rep. 2016 May 24;15(8):1809-21
pubmed: 27184841
Mol Genet Genomic Med. 2019 Jul;7(7):e00772
pubmed: 31187595
J Am Heart Assoc. 2012 Jun;1(3):e000703
pubmed: 23130135
Blood. 2017 Aug 10;130(6):742-752
pubmed: 28483762
Nucleic Acids Res. 2002 May 15;30(10):e47
pubmed: 12000852
Medicine (Baltimore). 2015 Sep;94(36):e1480
pubmed: 26356709
Rejuvenation Res. 2020 Aug;23(4):324-332
pubmed: 31805818
Nature. 1991 Apr 18;350(6319):569-73
pubmed: 1708110
N Engl J Med. 2017 Jul 13;377(2):111-121
pubmed: 28636844
Mol Cell. 2000 Aug;6(2):361-71
pubmed: 10983983
J Am Coll Cardiol. 2018 Feb 27;71(8):875-886
pubmed: 29471939
Oncotarget. 2018 Oct 19;9(82):35289-35290
pubmed: 30450156
N Engl J Med. 2014 Dec 25;371(26):2488-98
pubmed: 25426837
Front Genet. 2019 Jan 09;9:697
pubmed: 30687384
Blood Cells Mol Dis. 2019 Feb;74:44-50
pubmed: 30454965
Blood. 2015 Jul 2;126(1):9-16
pubmed: 25931582