Influence of
Lonicera japonica crude extracts
Radix Puerariae crude extracts
feces microbiota
finishing pigs
nutrient apparent digestibility
Journal
Animals : an open access journal from MDPI
ISSN: 2076-2615
Titre abrégé: Animals (Basel)
Pays: Switzerland
ID NLM: 101635614
Informations de publication
Date de publication:
17 Aug 2022
17 Aug 2022
Historique:
received:
16
05
2022
revised:
09
08
2022
accepted:
10
08
2022
entrez:
26
8
2022
pubmed:
27
8
2022
medline:
27
8
2022
Statut:
epublish
Résumé
This study aims to investigate the influence of adding Lonicera japonica (L. japonica) and Radix Puerariae crude extracts and their mixture to the diet of finishing pigs on their fecal microbes and nutrient apparent digestibility. A total of 72 healthy Duroc × Landrace × Yorkshire crossbred barrows without significant differences in body weight (93 ± 2 kg) were selected and randomly divided into four groups (18 in each group). Three replicate pens per group (six pigs per pen) were used, and two pigs were evaluated for each pen. The groups were fed the following diets: control group (CON), basic diet; chlorogenic acid group (CGA group), basic diet + 1 kg/ton L. japonica crude extract; Pueraria flavonoid group (PF group), basic diet + 1 kg/ton Radix Puerariae crude extract; and mix group (Mix group), basic diet + 0.5 kg/ton L. japonica crude extract + 0.5 kg/ton Radix Puerariae crude extract. The following results were obtained: (1) At the phylum level, Bacteroidetes, Firmicutes, Spirochaetes, Proteobacteria, Fibrobaeteres, and Kiritimatiellaeota were the main components of the fecal microbiota (top 5); the relative abundance of bacteria from phyla Firmicutes significantly increased in the Mix group than in the CON group (p < 0.05). At the genus level, Treponema_2, Rikenellaceae_RC9_gut_group, uncultured_bacterium_f_Lachnospiraceae, uncultured_bacterium_f_Prevotellaceae, and Prevotellaceae_NK3B31_group were the main components of the fecal microbiota (top 5); the relative abundance of bacteria from genus Lactobacillus significantly increased in the Mix group than in the CON group (p < 0.05). Chao1 and Ace counts were significantly higher in group CGA than in the CON group and group Mix (p < 0.05). The alpha and beta diversities and the relative abundance of fecal microbes were higher in all test groups than in the CON group. (2) The protein digestibility was significantly higher in the CGA and PF groups than in the CON group, and the TP digestibility was significantly higher in the CGA than in the CON and Mix groups (p < 0.05). In conclusion, Lonicera japonica and Radix Puerariae crude extract supplementation in the diet significantly changed fecal microbiota and improved the protein and TP digestibility of finishing pigs.
Identifiants
pubmed: 36009699
pii: ani12162109
doi: 10.3390/ani12162109
pmc: PMC9404931
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : Tianjin Pig Industry Technology System Innovation Team
ID : ITTPRS2021007
Organisme : Tianjin Seed Industry Science and Technology Major Project
ID : 19ZXZYSN00120
Organisme : Tianjin "131" Innovative Talent Team
ID : 20180338
Références
Phytomedicine. 2008 Jan;15(1-2):38-43
pubmed: 17890070
Science. 2009 May 29;324(5931):1190-2
pubmed: 19478181
Genes Nutr. 2019 Feb 01;14:4
pubmed: 30761185
Nature. 2006 Dec 21;444(7122):1022-3
pubmed: 17183309
Cell Metab. 2015 Dec 1;22(6):971-82
pubmed: 26552345
J Nutr. 2015 Dec;145(12):2774-80
pubmed: 26491121
J Anim Physiol Anim Nutr (Berl). 2020 Jul;104(4):1116-1125
pubmed: 31802552
J Anim Sci. 2018 Apr 3;96(3):1108-1118
pubmed: 29562339
Food Chem Toxicol. 2011 Dec;49(12):3119-27
pubmed: 22001170
Microb Biotechnol. 2018 Sep;11(5):859-868
pubmed: 29856120
J Lipid Res. 2013 Sep;54(9):2325-40
pubmed: 23821742
Food Sci Biotechnol. 2020 Aug 5;29(10):1413-1423
pubmed: 32999749
Nat Biotechnol. 2019 Aug;37(8):852-857
pubmed: 31341288
ISME J. 2020 Mar;14(3):688-701
pubmed: 31787747
Br J Nutr. 2019 Jul 28;122(2):131-140
pubmed: 30924428
Biomed Pharmacother. 2018 Jan;97:67-74
pubmed: 29080460
Appl Environ Microbiol. 2012 Dec;78(23):8264-71
pubmed: 23001654
J Chromatogr B Analyt Technol Biomed Life Sci. 2017 Jul 1;1057:70-80
pubmed: 28505492
Mol Biol Evol. 2017 Sep 1;34(9):2229-2244
pubmed: 28541480
J Ethnopharmacol. 2011 Oct 31;138(1):1-21
pubmed: 21864666
Cell Host Microbe. 2014 Dec 10;16(6):770-7
pubmed: 25498344
Nat Rev Microbiol. 2016 Jan;14(1):20-32
pubmed: 26499895
Phytother Res. 2014 Jul;28(7):961-75
pubmed: 24339367
Biochem Biophys Res Commun. 2018 Apr 15;498(4):707-714
pubmed: 29524423
Nat Prod Rep. 2017 Dec 13;34(12):1391-1421
pubmed: 29160894
Bioinformatics. 2014 Nov 1;30(21):3123-4
pubmed: 25061070
Science. 2012 Jun 8;336(6086):1262-7
pubmed: 22674330
Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3551-6
pubmed: 18292227
Environ Microbiol. 2009 Aug;11(8):2112-22
pubmed: 19397676
Am J Chin Med. 2018;46(8):1771-1789
pubmed: 30525896
J Anim Sci Biotechnol. 2022 Mar 8;13(1):22
pubmed: 35256011
Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6
pubmed: 23193283
Appl Microbiol Biotechnol. 2019 Oct;103(19):8157-8168
pubmed: 31401751
Anaerobe. 2006 Aug;12(4):178-85
pubmed: 16731014
Microbiome. 2020 Nov 18;8(1):161
pubmed: 33208178
Spectrochim Acta A Mol Biomol Spectrosc. 2015 Feb 25;137:1403-8
pubmed: 25310261
Nat Commun. 2015 Apr 01;6:6734
pubmed: 25828455
Microbiome. 2021 Jan 12;9(1):14
pubmed: 33436067
Trends Microbiol. 2017 Oct;25(10):851-873
pubmed: 28602521
Genome Biol. 2011 Jun 24;12(6):R60
pubmed: 21702898
Gut. 2010 Nov;59(11):1476-84
pubmed: 20947883
Environ Health Perspect. 2017 Mar;125(3):437-446
pubmed: 27634282
Clin Gastroenterol Hepatol. 2009 Nov;7(11):1202-9, 1209.e1
pubmed: 19631292
Nat Methods. 2010 May;7(5):335-6
pubmed: 20383131
Food Funct. 2018 Sep 19;9(9):4968-4978
pubmed: 30183786
Gastroenterology. 2018 Dec;155(6):1883-1897.e10
pubmed: 30144427
Microbiome. 2019 Feb 19;7(1):28
pubmed: 30782206