Intraoperative 3D Imaging Reduces Pedicle Screw Related Complications and Reoperations in Adolescents Undergoing Posterior Spinal Fusion for Idiopathic Scoliosis: A Retrospective Study.
O-arm
adolescent idiopathic scoliosis
complication
navigation
pedicle screws
scoliosis
spinal fusion
Journal
Children (Basel, Switzerland)
ISSN: 2227-9067
Titre abrégé: Children (Basel)
Pays: Switzerland
ID NLM: 101648936
Informations de publication
Date de publication:
28 Jul 2022
28 Jul 2022
Historique:
received:
12
07
2022
revised:
26
07
2022
accepted:
27
07
2022
entrez:
26
8
2022
pubmed:
27
8
2022
medline:
27
8
2022
Statut:
epublish
Résumé
Widely used surgical treatment for adolescent idiopathic scoliosis (AIS) is posterior spinal fusion using pedicle screw instrumentation (PSI). Two-dimensional (2D) or three-dimensional (3D) navigation is used to track the screw positioning during surgery. In this study, we evaluated the screw misplacement, complications, and need for reoperations of intraoperative 3D as compared to 2D imaging in AIS patients. There were 198 adolescents, of which 101 (51%) were evaluated with 2D imaging and 97 (49%) with 3D imaging. Outcome parameters included radiographic correction, health-related quality of life (HRQOL), complications, and reoperations. The mean age was 15.5 (SD 2.1) years at the time of the surgery. Forty-four (45%) patients in the 3D group and 13 (13%) patients in the 2D group had at least one pedicle screw repositioned in the index operation (p < 0.001). Six (6%) patients in the 2D group, and none in the 3D group had a neurological complication (p = 0.015). Five (5%) patients in the 2D group and none in the 3D group required reoperation (p = 0.009). There were no significant differences in HRQOL score at two-year follow-up between the groups. In conclusion, intraoperative 3D imaging reduced pedicle screw-related complications and reoperations in AIS patients undergoing PSI as compared with 2D imaging.
Identifiants
pubmed: 36010020
pii: children9081129
doi: 10.3390/children9081129
pmc: PMC9406950
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
Spine (Phila Pa 1976). 1999 Jul 15;24(14):1435-40
pubmed: 10423788
Spine (Phila Pa 1976). 2004 Sep 15;29(18):2040-8
pubmed: 15371706
Spine (Phila Pa 1976). 2005 Jan 15;30(2):222-6
pubmed: 15644761
Int J Spine Surg. 2012 Dec 01;6:49-54
pubmed: 25694871
J Clin Neurosci. 2012 Aug;19(8):1137-43
pubmed: 22721892
Spine (Phila Pa 1976). 2004 Feb 1;29(3):333-42; discussion 342
pubmed: 14752359
J Bone Joint Surg Am. 2011 Jul 6;93(13):1227-34
pubmed: 21776576
Int Orthop. 2020 May;44(5):919-926
pubmed: 31912228
World Neurosurg. 2018 Jan;109:e24-e32
pubmed: 28951183
Spine Deform. 2022 Mar;10(2):361-367
pubmed: 34746979
Spine Deform. 2019 Jul;7(4):577-581
pubmed: 31202374
Spine (Phila Pa 1976). 2014 Feb 15;39(4):286-90
pubmed: 24553446
Eur J Orthop Surg Traumatol. 2018 May;28(4):579-583
pubmed: 29396814
Eur Spine J. 2008 May;17(5):657-62
pubmed: 18301931
Spine (Phila Pa 1976). 2017 Mar;42(5):326-335
pubmed: 27310021
J Bone Joint Surg Am. 2019 Aug 21;101(16):1460-1466
pubmed: 31436653
Eur Spine J. 2008 Sep;17 Suppl 2:S347-50
pubmed: 18437432
Spine (Phila Pa 1976). 2010 May 15;35(11):E465-70
pubmed: 20473117
Spine (Phila Pa 1976). 2012 Feb 1;37(3):E188-94
pubmed: 21738101
Arch Orthop Trauma Surg. 2009 Sep;129(9):1211-8
pubmed: 19184070
BMJ. 2013 Apr 30;346:f2508
pubmed: 23633006
Eur Spine J. 2019 Jun;28(Suppl 2):68-72
pubmed: 31089815
Lancet. 2008 May 3;371(9623):1527-37
pubmed: 18456103
Eur Spine J. 2016 Jun;25(6):1729-37
pubmed: 25967559
Spine (Phila Pa 1976). 2001 Sep 15;26(18):2049-57
pubmed: 11547207
J Pediatr Orthop. 2017 Oct/Nov;37(7):e415-e420
pubmed: 28520681
Spine (Phila Pa 1976). 2012 Apr 15;37(8):E473-8
pubmed: 22020579
Bone Joint J. 2020 Mar;102-B(3):371-375
pubmed: 32114817
Spine (Phila Pa 1976). 2018 Jun 1;43(11):E639-E647
pubmed: 29059123
Spine J. 2017 Sep;17(9):1215-1229
pubmed: 28428081
Spine (Phila Pa 1976). 2012 Jan 15;37(2):E119-25
pubmed: 21673628
Eur Spine J. 2008 Sep;17 Suppl 2:S351-4
pubmed: 18622634